Badin Inn Stream Restoration Stanly County, North Carolina Year 1 Monitoring Report

Monitoring Year: 2010 Measurement Year 1 As-Built Date 2009 NCEEP Project Number 92666

May 2010

BADIN INN STREAM RESTORATION YEAR 1 MONITORING REPORT

CONDUCTED FOR THE NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

Table of Contents

I. Executive Summary/Project Abstract	1
II. Project Background	
A. Location and Setting	2
B. Mitigation Structures and Objectives	3
C. Project History and Background	5
III. Project Condition and Monitoring Results	9
A. Vegetation Assessment	9
1. Vegetative Problem Areas	9
2. Stem Counts	10
B. Stream Assessment	12
1. Morphometric Criteria	12
2. Hydrologic Criteria	13
IV. Methodology	14
LIST OF FIGURES Figure 1 Vicinity Map	7
TABLES	
Table I. Project Restoration Components	1
Table II. Project Activity and Reporting History	6
Table III. Project Contacts Table	8
Table IV. Project Background Table	9
Table V. Vegetation Plot Stem Count Summary	
Table VI. Verification of Bankfull Events	
Table VII. Categorical Stream Feature Visual Stability Assessment	
Table VIII. Baseline Stream Data Summary	
Toble IV Mambeleau and Hydraulia Manitarina Cummany	
Table IX. Morphology and Hydraulic Monitoring Summary	16

APPENDICIES

Appendix A Vegetation Data

- A-1. Vegetation Data Tables
 - Table 1. Vegetation Metadata
 - Table 2. Vegetation Vigor by Species
 - Table 3. Vegetation Damage by Species
 - Table 4. Vegetation Damage by Plot

- Table 5. Stem Count by Plot and Species Table 6. Vegetation Problem Areas Tables
- A-2. Vegetation Problem Area Photos
- A-3. Vegetation Monitoring Plot Photos

Appendix B Geomorphologic Data

- B-1 Stream Problem Areas Plan View (moved to Appendix C)
- B-2 Stream Problem Areas Table
- B-3 Representative Stream Problem Area Photos
- B-4 Stream Photo-station Photos
- B-5 Qualitative Visual Stability Assessment
- B-6 Annual Overlays of Cross Section Plots
- B-7 Annual Overlays of Longitudinal Plots
- B-8 Annual Overlays of Pebble Count Frequency Distribution Plots

Appendix C Integrated Plan View

I. EXECUTIVE SUMMARY/PROJECT ABSTRACT

The Badin Inn project consists of 4,174 linear feet of Priority I stream restoration located on the golf course of the Badin Inn Golf Resort and Club in the Town of Badin, North Carolina. Construction on the site was completed in April of 2009. The following report provides the Year 1 monitoring information.

The project consists of a portion of an unnamed tributary to Little Mountain Creek (UT to Little Mountain Creek), a tributary to the Yadkin River. It is located entirely on land owned by the Badin Inn Golf Resort and Club and drains into Little Mountain Creek in Stanly County, North Carolina. The watershed area for this project is 0.5 square miles.

The project is located entirely west of Henderson Street (SR 1720) and begins approximately 100 feet south of Henderson Street's intersection with Boyden Street (SR 1717) and ends at the tributary's confluence with Little Mountain Creek.

UT to Little Mountain Creek is a 2nd order stream, as several small 1st order tributaries flow into it near the top of the watershed. As it passes through the town, the channel has uniform rectangular dimensions and is lined with concrete. As the primary drainage feature in the Town of Badin, it receives discharge from numerous stormwater pipes from houses and townhouse complexes. The channelization of this stream occurred during the development of Badin by ALCOA during the early 1920's, and has since served as the primary stormwater conveyance system for a portion of the town.

Prior to restoration, the stream entered a much larger, concrete-lined channel that traveled straight down the valley until joining with Little Mountain Creek. An intermittent tributary that was routed underground through a culvert entered the main channel approximately 500 feet downstream of the beginning of the project. The relict floodplain of the pre-restoration channel was covered by fairways of the Badin Inn Golf Resort and Club, and some modification to the valley had been done to create bunkers, greens and tee boxes. In addition, a network of drains, pipes and irrigation systems had been installed within the valley, and numerous stormwater outfalls discharged into the stream.

The stream was designated as a single reach (Reach 1) for the purposes of the design. Reach 1 was restored using a Priority 1 restoration that involved removal of the concrete channel and adjustment of the stream dimension, pattern, and profile to allow the stream to more fully transport its water and sediment load. A combination of bedform transformations, channel dimension adjustments, pattern alterations, and structure installations were used to accomplish this. The natural meander patterns were restored and rock grade control vanes were incorporated for aquatic habitat enhancement and bed and bank stability. The tributary was also restored using a Priority 1 restoration. The riparian area also underwent buffer restoration with plantings and is protected with a permanent easement.

Construction of the restored channel was completed in April 2009 and planting was completed in April 2009.

A monitoring baseline was established in the Year 0 monitoring effort, and was stationed from 10+00 to the end of the constructed portion of the project at the confluence with Little Mountain Creek. In order to facilitate efficient monitoring and to avoid confusion amongst different monitoring groups in future monitoring efforts, a baseline was established that stations the restored portion of UT Little Mountain Creek continuously from 10+00 to 50+22. All of the stations presented in this report are based on this monitoring baseline.

II. PROJECT BACKGROUND

A. Location and Setting

The UT Little Mountain Creek project site is located in the Town of Badin in northeast Stanly County. (Figure 1). The headwaters of the project originate approximately 0.8 miles to the northeast of the restoration site. From the headwaters, UT to Little Mountain Creek flows for approximately 1.5 miles before emptying into Little Mountain Creek. One tributary enters UT Little Mountain Creek along its project extent.

The watershed of the project stream is approximately 0.5 square miles (346 acres) and is oriented northeast to southwest. The project is located within a conservation easement that occurs on private land owned by Badin Inn Golf Resort and Club. The upper portions of the watershed are comprised of the western slope of a ridgeline in the Uwharrie Mountains chain. Further down, the watershed contains part of the Town of Badin, and includes residential areas, and the Badin Inn Golf Resort and Club, the golf course property on which the project is located. Although the town is small, it possesses a densely developed area of townhouse complexes and houses that were built as residences for the workers of ALCOA, the large aluminum manufacturer that built the Town of Badin in the early part of the twentieth century. Most of this densely developed area lies within the watershed of UT to Little Mountain Creek.

If traveling from the north (Raleigh, Greensboro, Winston-Salem), proceed southwest on NC 49 from Asheboro. After passing over the Yadkin River/Badin Lake, head south on NC 8 until reaching New London, where NC 8 merges with US Highway 52. Shortly after the merger, turn left onto NC 740 towards Badin. In Badin, after passing the ALCOA plant, turn left on Nantahala Street, then turn right on Henderson Street (SR 1720), which becomes Valley Drive. The beginning of the project is on the right, where the road passes through the fairways of the golf course.

If coming from the south (Charlotte), take NC 24/27 towards Albemarle, then in Albemarle proceed north on NC 740 towards Badin. In Badin, turn right on Nantahala Street, then right on Henderson Street (SR 1720), which becomes Valley Drive. The beginning of the project is on the right, where the road passes the fairways of the golf course.

B. Mitigation Structures and Objectives

The Priority 1 restoration involved removal of the concrete lining and construction of a stream with a proper dimension, pattern, and profile to allow the stream to more fully transport its water and sediment load. A combination of bedform transformations, channel dimension and pattern restoration, and structure installations were used to restore the stream. Natural meander patterns were added and rock grade control vanes were incorporated for aquatic habitat enhancement and bed and bank stability. The tributary was restored using Priority 1 restoration. The Priority 1 restoration involved converting the concrete-lined channel into a sinuous channel that meanders for a total of 4,174 linear feet of stream as measured along the centerline (Table I). A riparian buffer was planted in April 2009 and is protected by a Conservation Easement.

The project had the goal of accomplishing the following objectives:

- 1. Restore 3,994 linear feet of UT to Little Mountain Creek and 180 linear feet of a small unnamed tributary to Little Mountain Creek.
- 2. Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load.
- 3. Improve water quality and reduce erosion by stabilizing the stream banks.
- 4. Reconnect the stream to its floodplain.
- 5. Improve aquatic habitat with the use of natural material stabilization structures such as root wads, rock vanes, woody debris, and a riparian buffer.
- 6. Provide aesthetic value, wildlife habitat, and bank stability through the creation or enhancement of a riparian zone.

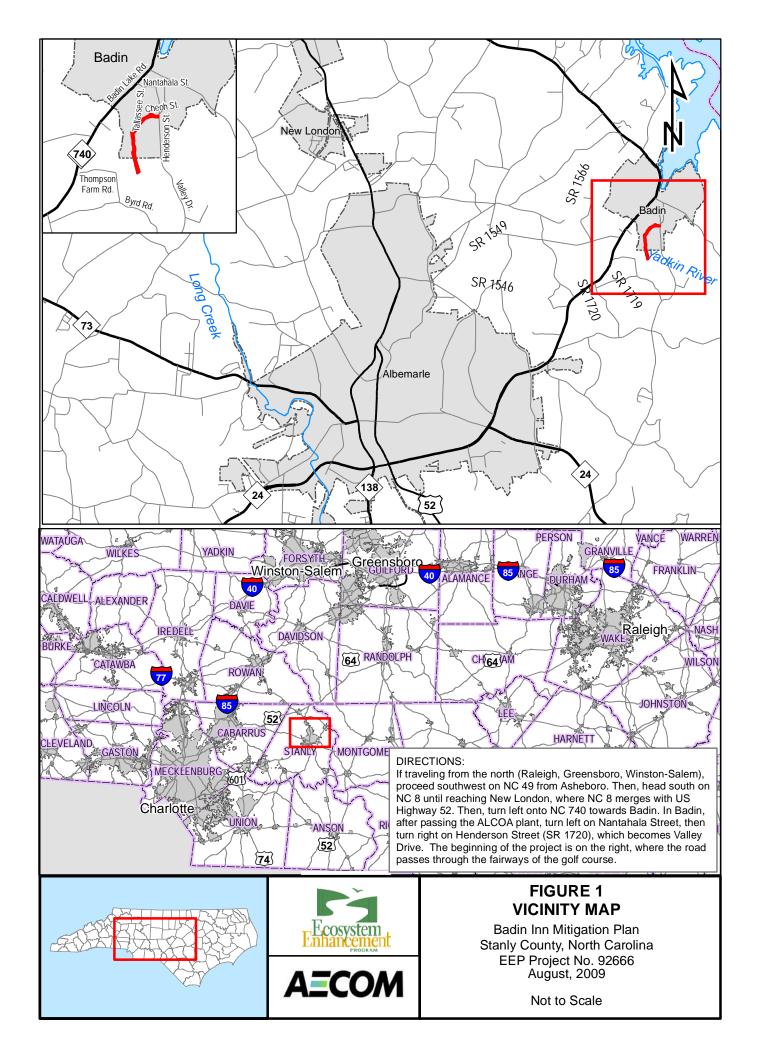
	Table I. Project Restoration Components Badin Inn Stream Restoration - EEP Project No. 92666														
Project Component or Reach ID	Existing Feet/Acres	Туре	Approach	Footage or Acreage	Mitigation Ratio	Mitigation Units	Stationing	Comment							
UT to Little Mountain Creek	3,540 feet	R	PI	3,994 feet	1.0	3,994	10+00 - 50+22	Construction started 28 feet from the start of stationing							
Tributary	141 feet	R	PI	180 feet	1.0	180	10+00 - 11+80								
Mitigation Unit S	ummations														
	Riparian	Nonriparian	Total												
	Wetland	Wetland	Wetland	Buffer											
Stream (lf)	(Ac)	(Ac)	(Ac)	(Ac)	Comment										
4,174	4,174 NA NA NA 0.0														

$$\begin{split} R &= Restoration \\ P1 &= Priority \ I \end{split}$$

C. Project History and Background

The Badin Inn Stream Restoration Project is located in the Town of Badin in Stanly County, North Carolina and is situated entirely within the golf course of the Badin Inn Golf Resort and Club (Figure 1). The project site encompasses a perennial, unnamed tributary to Little Mountain Creek (UT to Little Mountain Creek) and a small, first-order intermittent tributary of UT to Little Mountain Creek (Tributary) and the associated floodplain through which these channels flow. Prior to restoration, the channel of UT to Little Mountain Creek consisted of approximately 3,700 feet of a concrete-lined and straightened perennial stream that had been in its altered state for nearly a century. The Tributary consisted of approximately 141 feet of an intermittent channel routed through a culvert from where it entered the golf course property until it's confluence with UT to Little Mountain Creek.

UT to Little Mountain Creek is a 2nd order stream, as several small 1st order tributaries flow into it near the top of the watershed. As it passes through the town, the channel has uniform rectangular dimensions and is lined with concrete. As the primary drainage feature in the Town of Badin, it receives discharge from numerous stormwater pipes from houses and townhouse complexes. The channelization of this stream occurred during the development of Badin by ALCOA during the early 1920's, and has since served as the primary stormwater conveyance system for a portion of the town. Where the stream enters the Badin Inn Golf Resort and Club golf course, the stream is confined to a narrow, stone-lined channel for roughly 700 feet. It continues in this form until reaching the conservation easement and the upstream end of the project reach, after passing through a 48" culvert under Henderson Street (State Road 1720).


Prior to restoration, the stream entered a much larger, concrete-lined channel at this point, which traveled straight down the valley until joining with Little Mountain Creek. An intermittent tributary that was routed underground through a culvert entered the main channel approximately 500 feet downstream of the beginning of the project. The relict floodplain of the pre-restoration channel was covered by fairways of the Badin Inn Golf Resort and Club golf course, and some modification to the valley had been done to create bunkers, greens and tee boxes. In addition, a network of drains, pipes and irrigation systems had been installed within the valley, and numerous stormwater outfalls discharged into the stream.

The project is located in the Yadkin River Basin 8-digit Catalogue Unit 03040104 and the 14-digit hydrological unit 03040104010010. This watershed was identified by the NC Ecosystem Enhancement Program (EEP) as a Targeted Local Watershed and is also classified by the NC Division of Water Quality (NCDWQ) as a Water Supply Watershed (WSIV). The receiving stream, Little Mountain Creek, is listed on the 303(d) list for biological impairment (NCDENR, 2008).

The project site is located in the Carolina Slate Belt ecoregion (Griffith *et. al*, 2002). The primary adjacent land use throughout the project watershed consists of managed herbaceous areas (which consists mainly of the Badin Inn golf course), developed areas, including much of the residential areas of the Town of Badin, and forested areas on the slopes above the town.

Table II. Project Activity and Reporting History Badin Inn Stream Restoration - EEP Project No. 92666											
Activity or Report	Data Collection Complete	Actual Completion or Delivery									
Restoration Plan	9/1/2007	July 2008									
Final Design – 90%	July 2008	December 2008									
Construction	NA	April 2009									
Temporary S&E mix applied to entire project area	NA	4/1/2009									
Permanent seed mix applied to entire project area	NA	4/1/2009									
Containerized, B&B, and livestake plantings	4/1/2009	4/1/2009									
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	July 2009	August 2009									
Year 1 Monitoring	January 2010	January 2010									
Year 2 Monitoring											
Year 3 Monitoring											
Year 4 Monitoring											
Year 5 Monitoring											
Year 5+ Monitoring											

6

Table III. Project Contacts Table											
	eam Restoration - EEP Project	No. 92666									
Designer	Earth Tech AECOM										
	701 Corporate Center Drive	e, Suite 475									
	Raleigh, NC 27607										
	Phone: (919) 854-6200										
Construction Contractor	River Works, Inc.										
	8000 Regency Parkway, Su	iite 200									
	Cary, NC 27511										
	Phone: (919) 459-9001										
Survey Contractor	Earth Tech AECOM										
	701 Corporate Center Drive	, Suite 475									
	Raleigh, NC 27607										
	Phone: (919) 854-6200										
Planting Contractor	Efird Landscaping, Inc										
	42759 Greenview Dr.										
	Albemarle, NC 28001										
	Phone: (704) 983-1970										
Seeding Contractor	Efird Landscaping, Inc										
	42759 Greenview Dr.										
	Albemarle, NC 28001										
	Phone: (704) 983-1970										
Seed Mix Sources	Mellow Marsh Farm, Inc.										
	1312 Woody Store Rd.										
	Siler City, NC 27344										
	Phone: (919) 742-1200										
Nursery Stock Suppliers	Arborgen LLC	Carolina Wetland Services									
	5594 Highway 38	550 E. Westinghouse Blvd.									
	Blenheim, SC 29516	Charlotte, NC 28273									
	Phone: (843) 528-9669	Phone: (704) 527-1177									
Monitoring Performers	Earth Tech AECOM										
	701 Corporate Center Drive	, Suite 475									
	Raleigh, NC 27607										
Stream Monitoring	Earth Tech AECOM	Phone: (919) 854-6200									
Vegetation Monitoring	Earth Tech AECOM	Phone: (919) 854-6200									

Table IV. Project Background Table Badin Inn Stream Restoration/ Project No. 92666												
	UT to Little Mountain Creek	Tributary										
Project County	Stanly County	Stanly County										
Drainage Area	0.5 sq miles	0.05 sq. miles										
Drainage impervious cover estimate (%)	5%	15%										
Stream order	2nd	1st										
Physiographic Region	Piedmont	Piedmont										
Ecoregion	Carolina Slate Belt	Carolina Slate Belt										
Rosgen Classification of As-built	C4	С										
Cowardin Classification	Riverine	Riverine										
Dominant soil types	Oakboro/Kirksey Silt loams	Oakboro/Kirksey Silt loams										
Reference site ID	Spencer Creek and UT Meadow Fork	Spencer Creek and UT Meadow Fork										
USGS HUC for Project and Reference	03040104 (Project) 03040101 (UT Meadow Fork) 03040103 (Spencer Creek	03040104 (Project) 03040101 (UT Meadow Fork) 03040103 (Spencer Creek										
NCDWQ Sub-basin for Project and Reference	NA	NA										
NCDWQ classification for Project and Reference	WS-IV (UT Little Mountain Creek) C (Spencer Creek) B Tr+ (UT Meadow Fork)	WS-IV (UT Little Mountain Creek) C (Spencer Creek) B Tr+ (UT Meadow Fork)										
Any portion of any project segment 303(d) listed?	No	No										
Any portion of any project upstream of a 303d Isited segment	Yes	Yes										
Reasons for 303d listing or stressor	Low dissolved oxygen and high conductivity	Low dissolved oxygen and high conductivity										
% of project easement fenced	100	100										

III. PROJECT CONDITION AND MONITORING RESULTS

A. Vegetation Assessment

The final vegetative success criteria will be the survival of 260 5-year old planted trees per acre at the end of year 5 of the monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted trees per acre at the end of year 3 of the monitoring period. Vegetation monitoring was performed using the CVS-EEP Level 2 protocol.

1. Vegetative Problem Areas

A few vegetation problem areas were noted during the Year 1 monitoring. As a whole the vegetation plantings have been very successful and only a few minor areas of concern were noted. The bulk of the problems were associated with sparse vegetative growth occurring on the floodplain in a few locations. This is likely a combination of soil compaction from

construction and scour resulting from frequent flooding along the stream. An instance of bare coir matting was noted but was relatively small in size and poses no perceptible threat to bank failure. Vehicle operation within the easement was noted in a few locations. In one instance a former stream crossing area has been slow to recover from construction and vegetation is noticeably lower at the crossing site. Another location near the most downstream bridge was disturbed when the permanent bridge was brought onto the site. None of the problems are major and all are easily remedied by additional plantings and installation of more exclusive fencing. Detailed descriptions and locations of each problem area and a representative photo of each problem type are located in Appendix A.

2. Stem Counts

Baseline vegetation plots were established in April 2009 after vegetative planting was completed. Nine (9) vegetation survival plots were staked out in the floodplain and terrace along UT Little Mountain Creek within the project area. Each plot measured 10m X 10m and had an area of 100m^2 . Stems were flagged and counted to establish baseline and yearly stem counts. Year 1 vegetation monitoring was performed on December 8, 2009.

Year 1 monitoring revealed an average of 607 woody stems per acre. This average is slightly below the baseline amount of 621 woody stems per acre. The range of stem densities encountered on the mitigation site varied from 283 to 850 stems per acre. Vegetation diversity was low in some individual plots. Species counts of 6 or fewer species occurred in 4 plots: Plots 2, 5, 7, and 9. Some dead stems were noted in the vegetation plots with an average of 1.3 dead stems per plot. Interestingly, some of the stems that were counted as dead during the baseline survey were apparently alive. Although they exhibited no signs of life at that point, a few are now actively growing and were counted as living during the Year 1 monitoring. Two stems were missing from the previous year's sampling and were likely trampled by golfers searching for wayward balls. Areas around plots 2 and 5 were at or below the minimum success criteria after three years of post construction monitoring. Approximately 2½ acres, encompassing these low density areas, have been replanted with 800 trees.

Physical damage was noted in most plots. Again the majority of damage was minor and consisted of broken stems or branches on the bare root plantings. Fifty percent of planted stems had what appeared to be remnant damage from the initial planting that was still influencing growth processes. Over 7% of the stems had damage that appeared to be a result of human trampling. This will be an ongoing problem in that golf balls were commonly found in the easement indicating that golfers frequently hit wayward shots and likely spend time searching for their ball. Slightly over 5% of the plants appeared to be stunted due to being planted in an area too wet for them to thrive. Deer activity was also present in the easement as numerous droppings were observed and it appears that some of the stems have been damaged by deer grazing. The deer activity will have to be watched closely since the increase in vegetation could attract deer more frequently resulting in an increasing problem. Currently levels of deer induced damage are not enough to warrant concern.

The *Juncus effusus* plugs and live stakes are growing well with little evidence of difficulty. The permanent seed mix germinated, and flowering occurred during the growing season in many of the species. Some individuals of *Bidens* reached heights of approximately 3 feet during the fall before dieback.

Table V. Vegetation Plot Stem Count Summary Badin Inn Stream Restoration/ Project No. 92666													
Spe		11111 5	u cam	Kestor		Plots*	110. 72	000			MY1 Total	Initial Total	
Scientific Name	Common Name	01	02	03	04	05	06	07	08	09			
Shrubs													
Sambucus													
canadensis	Elderberry					1					1	5	
Callicarpa americana	American Beautyberry	2	1			2	1	1	1	7	15	16	
Prunus americana	American plum		1				1	1	1	,	15 1	10	
1 runus americana	Total Shrubs	2	2	0	0	3	1	1	1	7	17	22	
Trees	Total Shrubs			U	U	3	1	1	1	/	17	22	
	D - Jl J	1	2	2	1		10	4	_		22	22	
Cercis canadensis Carpinus	Redbud	1	3	2	1		10	4	2	-	23	22	
caroliniana	Ironwood	2			1						3	4	
Quercus alba	White oak	3		1							4	4	
Quercus nigra	Water oak	2		-							2	2	
Quercus velutina	Black oak	1		4							5	6	
Nyssa sylvatica	Black gum	1	1	<u> </u>	2		1		1		6	7	
Asimina triloba	Paw Paw	1	-						1	8	9	10	
Quercus phellos	Willow oak	1	1	2	1			1		0	5	3	
Cornus florida	Flowering dogwood		1	1	1			2			4	6	
Castanea pumila	Chinquapin	1		7	6	2	1	12	5		34	32	
Custanca pumita	American	1		,	0		-	12			34	32	
Diospyros virginiana	persimmon			3	3	2	1		2		11	11	
Morus rubra	Red mulberry	3		1	1						5	5	
Betula nigra	River birch						1		1		2	3	
Fraxinus													
pennsylvanica	Green ash	1									1	0	
Quercus sp.	Oak species					1			1		2		
Unknown							1		1		2		
	Total Trees	16	5	21	16	5	15	19	13	8	118	116	
TABLE	Total Stems of	10	7	21	16	0	16	20	1.4	1.5	125	120	
SUMMARY	planted woody vegetation	18	7	21	16	8	16	20	14	15	135	138	
	% Shrubs	11%	29%	0%	0%	38%	6%	5%	7%	47%	13%	16%	
	% Trees	89%	71%	100%	100%	63%	94%	95%	93%	53%	87%	84%	
	Current Density	07/0	/ 1 /0	10070	10070	03/0	J 7 7 / U	73/0	73/0	JJ/0	07/0	U- 7 /0	
	Shrubs per acre	81	81	0	0	121	40	40	40	283	76	99	
	Shrubs per hectare	200	200	0	0	300	100	100	100	700	189	244	
	Trees per acre	647	202	850	647	202	607	769	526	324	531	522	
	Trees per hectare	1600	500	2100	1600	500	1500	1900	1300	800	1311	1289	
	Total stem/acre		283			324		809					
	Total stems/	728	203	850	647	324	647	009	567	607	607	621	
	hectare	1800	700	2100	1600	800	1600	2000	1400	1500	1500	1533	

B. Stream Assessment

The stream remains in excellent condition. Only one small area of scour was observed during the Year 1 monitoring. Floodplain scour was noted in several locations and the possibility of a few overflow channels that were in the early stages of formation were the only problems observed along the stream and these problems were minor. Overall, the stream is remaining close to as-built morphology.

1. Morphometric Criteria

Considering the 5 year timeframe of standard mitigation monitoring, restored streams should demonstrate morphologic stability in order to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is to also be expected. However, the observed change should not indicate a high rate or be unidirectional over time such that a robust trend is evident. If some trend is evident, it should be very modest or indicate migration to another stable form. Examples of the latter include depositional processes resulting in the development of constructive features on the banks and floodplain, such as an inner berm, slight channel narrowing, modest natural levees, and general floodplain deposition. Annual variation is to be expected, but over time this should demonstrate maintenance around some acceptable central tendency while also demonstrating consistency or a reduction in the amplitude of variation. Lastly, all of this must be evaluated in the context of hydrologic events to which the system is exposed over the monitoring period.

For channel dimension, cross-sectional overlays and key parameters such as cross-sectional area and the channel's width to depth ratio should demonstrate modest overall change and patterns of variation that are in keeping with above. For the channels' profile, the reach under assessment should not demonstrate any consistent trends in thalweg aggradation or degradation over any significant continuous portion of its length. Over the monitoring period, the profile should also demonstrate the maintenance or development of bedform (facets) more in keeping with reference level diversity and distributions for the stream type in question. It should also provide a meaningful contrast in terms of bedform diversity against the pre-existing condition. Bedform distributions, riffle/pool lengths and slopes will vary, but should do so with maintenance around design/As-built distributions. This requires that the majority of pools are maintained at greater depths with lower water surface slopes and riffles are shallow with greater water surface slopes. Substrate measurements should indicate the progression towards, or the maintenance of, the known distributions from the design phase.

Cross-section and longitudinal surveys were completed on January 8, 2010. Ten cross-sections and approximately 4,022 linear feet of UT Little Mountain Creek and 180 linear feet of the unnamed tributary was surveyed. A bed material analysis was performed on December 22, 2009 and January 5, 2010 and photographs were taken at all permanent photo points.

A monitoring baseline was established in the Year 0 monitoring effort, and was stationed from 10+00 at the culvert under Valley Drive to 50+22 at the end of the constructed portion of the project, in order to facilitate future monitoring efforts by different monitoring groups. The stationing of this baseline is used to identify locations along the restored portion of UT Little Mountain Creek throughout this report. Tributary stationing is the same in the monitoring as the construction documents.

The assessment included the survey of ten cross-sections, as well as the longitudinal profile. Cross-sections were marked with rebar. Cross sections are located at the following locations.

```
Cross-Section #1. UT Little Mountain Creek, Station 47+67, riffle Cross-Section #2. UT Little Mountain Creek, Station 43+05, pool Cross-Section #3. UT Little Mountain Creek, Station 38+26, riffle Cross-Section #4. UT Little Mountain Creek, Station 33+72, riffle Cross-Section #5. UT Little Mountain Creek, Station 29+78, pool Cross-Section #6. UT Little Mountain Creek, Station 25+39, riffle Cross-Section #7. UT Little Mountain Creek, Station 20+45, pool Cross-Section #8. UT Little Mountain Creek, Station 16+50, pool Cross-Section #9. UT Little Mountain Creek, Station 13+61, riffle Cross-Section #10. Tributary, Station 12+85, Station 10+85, riffle
```

Survey data collected during future monitoring periods may vary depending on actual rod placement and alignment; however, from this point forward this information should remain similar in overall appearance.

2. Hydrologic Criteria

Monitoring requirements state that at least two bankfull events must be documented through the five-year monitoring period. Therefore, one stream crest gauge was installed on UT Little Mountain Creek. One documented bankfull event occurred on December 25, 2009 following a heavy rainfall event.

Table VI. Verification of Bankfull Events Badin Inn Stream Restoration/ Project No. 92666													
Date of Data Collection	Date of Occurrence	Method	Photo # (if applicable)										
2009	12-25-09	Photographed on-site	Photo 1										

Photo 1. Photo of bankfull event on 12-25-09.

BEHI estimates are not applicable to the Year 1 Monitoring Report.

S	Table VII. Categorical Stream Feature Visual Stability Assessment Badin Inn Stream Mitigation Site/Project No. 92666														
Feature	Initial	MY-01	MY-02	MY-03	MY-04										
A. Riffles	100%	99%													
B. Pools	100%	100%													
C. Thalweg	100%	100%													
D. Meanders	100%	100%													
E. Bed General	100%	100%													
F. Vanes/J Hooks etc.	100%	100%													
G. Wads and Boulders	100%	100%													

IV. METHODOLOGY

The survey of the cross-sections and longitudinal profile were performed using RTK survey-grade GPS and/or total station survey equipment to detect thalweg, bankfull, and water surface elevations of the UT to Little Mountain Creek. A monitoring baseline was established in the Year 0 monitoring effort, and was stationed from the downstream end of the constructed portion of the project upstream to approximately station 10+00, in order to facilitate future monitoring efforts by different monitoring groups. The stationing of this baseline is used to identify locations along the restored portion of UT Little Mountain Creek throughout this report. The entire length of the tributary is surveyed annually as well. Baseline cross sections were established for ten cross sections. During monitoring year 1, it was found that one or more pins were "removed" from cross sections 5 and 8. These missing pins were reset and the monitoring year 1 data will be used as the new baseline data for these two cross sections.

Data was entered into the stream morphology applications program, Rivermorph, to obtain the dimensions of the cross sections and parameters applicable to the longitudinal profile. Reports generated by Rivermorph are used in this report to display and summarize stream survey data.

Table VIII. Baseline Stream Data Summary Badin Inn Stream Restoration - EEP Project No. 92666 Reach I (4,174 feet)

Parameter	Gauge ²	Reg	ional (Curve	Pre-Existing Condition	Rea	eferen ach U adow I Creek	T to Fork		eferen Reach ncer C	า		gn UT t untain	to Little Creek		Desigr ributa			Built U e Mour Creek	ntain		As-Bui ributa	
Dimension and Substrate - Riffle		Min	Max	Med	Min Max Av	g Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Bankfull Width (ft)	NA							11.81			12.3			10			5.6	9.37	11.63	10.914			6.29
Floodprone Width (ft)					<u> </u>													44.55	53.44	48.742			46.89
Bankfull Cross Sectional Area (ft²)	NA				2.5			15.34			10.8			7			3.2	7.21	9	8.004			2.64
Bankfull Mean Depth (ft)	NA							1.3			0.88			0.7			0.57	0.65	0.8	0.734			0.42
Bankfull Max Depth (ft)	NA				2.5			2.11			1.8			1			0.7	1.04	1.25	1.196			0.56
Width/Depth Ratio	NA							9.08			13.98			14.3			9.82	12.17	17.89	14.99			14.98
Entrenchment Ratio	NA							28.11			>2.2			>2.2			>2.2	3.97	5.37	4.498			7.45
Bank Height Ratio	NA					1.03	1.05	1.04			1.1			1			1			1			1
Wetted Perimeter (ft)	NA																						
Hydraulic Radius (ft)	NA																						
Pattern					₩																		
Channel Beltwidth (ft)					W	22	57.1	37.2	24	52	38	18.6	48.3	33.45	10.42	27.05	18.73	18.6	48.3	33.45	10.42	27.05	18.73
Radius of Curvature (ft)						18	42.8	25	5.4	22.1	12.9	22.1	42.3	32.2	12.38	23.69	18.03	22.1	42.3	32.2	12.38	23.69	18.03
Meander Wavelength (ft)					STREAM IS	78.5	149.9	107.1	54	196	125	43.9	159.35	101.63	24.59	89.24	56.91	43.9	159.35	101.63	24.59	89.24	56.91
Meander Width Ratio						1.86	4.83	3.15	1.95	4.23	3.09	1.86	4.83	3.35	1.86	4.83	3.35	1.86	4.83	3.35	1.86	4.83	3.35
Profile																							
Riffle Length (ft)												14.32	154.43	49.04	18.93	28.54	24.84	18.24	121.02	54.01	17.17	22.51	20.96
Riffle Slope (ft/ft)					0	0.011	0.021	0.017	0.02	0.036	0.026	0.012	0.037	0.019	0.022	0.04	0.03	0.0053	0.0205	0.0143	0.0162	0.0505	0.0275
Pool Length (ft)						12.98	20.86	18.02	9.29	23.92	17.78	18.3	31	24.65	10.25	17.36	13.8	14.79	41.85	22.14	10.89	25.78	16.34
Pool Spacing (ft)						79.48	96.97	88.23	13	46.5	24.2	68.4	83.1	75.75	5.92	21.17	13.54	36.33	148.07	66.65	36.63	39.7	38.17
Substrate					A																		
d50(mm)	NA																						
d84 (mm)	NA																						
Additional Reach Parameters																							
Valley length (ft)					3540		200			235			3820			157							
Channel length (ft)					3540		288			266			3994			180			3994			180	
Sinuosity (ft)					1		1.4			1.1			1.33			1.03			1.33			1.03	
Water Surface Slope (Channel) (ft/ft)	NA				0.0178		0.0122			0.0132			0.0134	1		0.0147			0.012			0.012	
BF slope (ft/ft)	NA				0.0178		0.0122			0.0132			0.0134	1		0.0147			0.012			0.012	
Rosgen Classification	NA				NA		E4			C4			C4			E4			C4			C4	
Habitat Index					N/A		N/A			N/A													
Macrobenthos					N/A		N/A			N/A	_												

Badin Inn Stream Restoration NCEEP Project Number: 92666 AECOM 2010 Monitoring Report Year 1 of 5

Table IX. Morphology and Hydraulic Monitoring Summary Badin Inn Stream Restoration/ EEP Project No. 92666 Reach 1 (4.174 feet)

Reach 1 (4,174 feet) Parameter **Cross Section 1 Riffle Cross Section 2 Pool Cross Section 3 Riffle Cross Section 4 Riffle Cross Section 5 Pool** BASE MY1 MY2 MY3 MY4 MY5 BASE MY1* MY2 MY3 MY4 MY5 Dimension BF Width (ft) 11.63 11.94 11.23 9.77 11.23 10.8 NA Floodprone Width (ft) (approx) 48.11 52.5 41.31 44.5 53.44 52.21 NA BF Cross-Sectional Area (ft²) 7.62 9.52 8.48 7.87 5.88 9.25 NA 10.36 9.78 BF Mean Depth (ft) 0.65 0.8 0.77 NA BF Max Depth (ft) 1.24 1.49 0.86 1.4 1.21 1.24 NA Width/Depth Ratio 17.89 14.93 14.26 16.04 16.28 14.04 12.56 NA Entrenchment Ratio 4.14 4.4 4.05 3.97 NA 5.19 4.76 11.94 12.32 14.35 11.45 11.57 10.06 11.69 11.28 NA 10.85 Wetted Perimeter (ft) Hydraulic radius (ft) 0.64 0.77 0.68 0.74 0.68 0.58 0.77 0.82 NA 0.95 Bank Height Ratio (ft/ft) NA Substrate d50 (mm) 29.18 9.65 d84 (mm) 71.8 30.43 34.18 27.3 49.56 13.65 BASELINE Parameter MY-01 (2009) MY-02 (2010) MY-03 (2011) MY-04 (2012) MY-05 (2013) Max Med Max Med Min Max Med Min Max Med Min Max Med Min Max Med Pattern Channel Beltwidth (ft) 33.45 18.6 48.3 18.6 48.3 33.45 Radius of Curvature (ft) 22.1 42.3 32.2 22.1 42.3 32.2 Meander Wavelength (ft) 43.9 159.35 101.63 43.9 159.35 101.63 Meander Width Ratio 1.86 4.83 3.35 4.83 3.35 Profile Riffle Length (ft) 18.24 121.02 54.01 6.53 105.45 37.49 Riffle Slope (ft/ft) 0.0053 0.0205 0.0143 0.0516 0.0177 0.0041 Pool length (ft) 14.79 41.85 22.14 8.05 46.13 24.79 Pool spacing (ft) 148.07 66.65 12.08 134.2 62.96 **Additional Reach Parameters** Valley Length (ft) 3820 3820 Channel Length (ft) 3994 3994 Sinuosity 1.33 1.33 Water Surface Slope (ft/ft) 0.012 0.012 BF Slope (ft/ft) 0.012 0.012 Rosgen Classification C4 C4 Habitat Index

*MY1 will be the new baseline

Macrobenthos

Table IX. Morphology and Hydraulic Monitoring Summary Badin Inn Stream Restoration/ EEP Project No. 92666 Reach 1 (4,174 feet)

							,					each	l (4,17												_					
Parameter	Cross Section 6 Riffle Cross Section 7 Pool Cross Section 8 Pool Cross Section 9 Riffle						Cross Section 10 Riffle Tributary																							
	D A GE	D 6374	D 4770	1 (7/2	2 6374	. 6375	D + CE	3 63 7 1	1 (110) (Y/O	1 6374	3 63 7 5	D + CE	3 53 71 4	2 (7.70	1 (11/2	2.6374	3 63 7 5	D A GE	3 53 7 1	2 (27.2	1 f1 f2	3 4374	D 6375	D A GE	3 53 7 1			3 6374	1 63 7 5
Dimension		1	1 -	MY3	MY4	MY5			MY2	MY3	MY4	MY5			MY2	MY3	MY4	MY5			MY2	MY3	MY4	MY5	BASE	!	MY2	MY3	MY4	MY5
BF Width (ft)	9.37	10					16.05	14.24					NA	12.01					11.11	10.6					6.29	8.51				
Floodprone Width (ft) (approx)	50.33	53					40.5	40.3					NA	62.5					47.28	48					46.89	43				
BF Cross-Sectional Area (ft ²)	7.21	8.54	,				14.18	17.27					NA	13.53					8.32	9.57					2.64	3.65				
BF Mean Depth (ft)	0.77	0.85	J.				0.88	1.21					NA	1.13					0.75	0.9					0.42	0.43				
BF Max Depth (ft)	1.04	1.17					2.3	2.37					NA	2.58					1.25	1.6					0.56	0.64				
Width/Depth Ratio	12.17	11.76					18.24	11.77					NA	10.63					14.81	11.78					14.98	19.79				
Entrenchment Ratio	5.37	5.3	,				2.52	2.83					NA	5.2					4.25	4.53					7.45	5.05				
Wetted Perimeter (ft)	9.78	10.52					16.96	15.53					NA	13.38					11.5	11.31					6.54	8.76				
Hydraulic radius (ft)	0.74	0.81					0.84	1.11					NA	1.01					0.72	0.85					0.4	0.42				
Bank Height Ratio (ft/ft)	1	1		'			1	1					NA	1					1	1					1	1				
Substrate																														
d50 (mm)	26.71	31.37					0.79	0.06					NA	0.05					13.39	38.5					28.64	13.18				
d84 (mm)	57.67	62.54					39.8	18.93					NA	5.7					54.5	80.71					32	33.86				
Parameter		M	Y-01 (200	09)			MY	Y-02 (20	10)		M	Y-03 (20	011)		MY	7-04 (20	12)			MY	Y-05 (20	13)			M	Y+ (201	4)			
Pattern		Min	Max	Med			Min	Max	Med		Min	Max	Med		Min	Max	Med			Min	Max	Med			Min	Max	Med			
Channel Beltwidth (ft)																														
Radius of Curvature (ft)																														
Meander Wavelength (ft)																														
Meander Width Ratio																														
Profile																														
Riffle Length (ft)																														
Riffle Slope (ft/ft)																														
Pool length (ft)																														
Pool spacing (ft)																														
Additional Reach Parameters																														
Valley Length (ft)																														
Channel Length (ft)																														
Sinuosity																														
Water Surface Slope (ft/ft)																														
BF Slope (ft/ft)																														
Rosgen Classification																														
		_										_														_				
Habitat Index																														

*MY1 will be the new baseline

APPENDIX A

- Vegetation Data Tables 1.

 - Table 1. Vegetation Metadata
 Table 2. Vegetation Vigor by Species
 Table 3. Vegetation Damage by Species

 - Table 4. Vegetation Damage by Plot Table 5. Stem Count by Plot and Species
 - Table 6. Vegetation Problem Areas Tables
- 2. Vegetation Problem Area Photos
- **Vegetation Monitoring Plot Photos** 3.

Table 1. Vegetation Metadata Badin Inn Stream Restoration/ EEP No. 92666 Appendix A

Report

Prepared By Kevin Lapp 12/21/2009 8:27 **Date Prepared**

database

database name AECOM-2008-0.mdb

location Q:\99255\Monitoring\Vegetation

computer

name USRAL3PC035 file size 45125632

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Description of database file, the report worksheets, and a summary of

Metadata project(s) and project data.

Each project is listed with its PLANTED stems per acre, for each year. This

Proj. planted excludes live stakes.

Each project is listed with its TOTAL stems per acre, for each year. This Proj, total stems includes live stakes, all planted stems, and all natural/volunteer stems.

List of plots surveyed with location and summary data (live stems, dead

Plots stems, missing, etc.).

Vigor Frequency distribution of vigor classes for stems for all plots. Frequency distribution of vigor classes listed by species. Vigor by Spp

List of most frequent damage classes with number of occurrences and

Damage

percent of total stems impacted by each.

Damage by

Spp Damage values tallied by type for each species.

Damage by

Damage values tallied by type for each plot. Plot

A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are

ALL Stems by

Plot and spp excluded.

PROJECT SUMMARY--

Project Code 92666 project Name Badin Inn

Description

River Basin Yadkin-Pee Dee

length(ft) 4174

stream-to-edge

width (ft) 42 area (sq m) 32570

Required Plots (calculated) 9 Sampled Plots 0

	Table 2. Vegetation Vigor by Species														
	Badin Inn Stream Restoration/ EEP No. 92666 Appendix A														
	Species 4 3 2 1 0 Missing Unknown														
	•	-			1	U		Unknown							
	Asimina triloba	8	1				1								
	Betula nigra	2				1									
	Callicarpa americana	3	9	2	1	1									
	Castanea pumila	4	22	6	2	1									
	Cornus florida	2	1	1		1	1								
	Diospyros virginiana	6	3	2											
	Fraxinus														
	pennsylvanica	1													
	Nyssa sylvatica	2	4			2									
	Prunus americana	1													
	Quercus alba	3	1												
	Quercus nigra			2											
	Quercus phellos	4	1												
	Quercus velutina	1	3	1											
	Sambucus														
	canadensis				1	4									
	Morus rubra		3	2											
	Carpinus caroliniana	1		1	1	1									
	Cercis canadensis	1	12	10		1									
	Quercus	1			1										
	Unknown		1	1											
TOT:	19	40	61	28	6	12	2								

Table 3. Vegetation Damage by Species Badin Inn Stream Restoration/ EEP No. 92666 Appendix A

			T		T		T
Species	All Damage Categories	(no damage)	Enter other damage	Deer	Human Trampled	Site Too Wet	Unknown
Asimina triloba	10	9	1				
Betula nigra	3	2			1		
Callicarpa americana	16	4	9	1	2		
Carpinus caroliniana	4	2	1	1			
Castanea pumila	35	4	28		2		1
Cercis canadensis	24	2	18		1	3	
Cornus florida	6	3	2		1		
Diospyros virginiana	11	7	2			2	
Fraxinus pennsylvanica	1	1					
Morus rubra	5		5				
Nyssa sylvatica	8	3	4		1		
Prunus americana	1	1					
Quercus	2	1			1		
Quercus alba	4	3	1				
Quercus nigra	2					1	1
Quercus phellos	5	4	1				
Quercus velutina	5	1	2	1		1	
 Sambucus canadensis	5	3			2		
Unknown	2		1			1	

Table 4. Vegetation Damage by Plot Badin Inn Stream Restoration/ EEP No. 92666 Appendix A

	1	·	1	1	1	ı	1	
	plot	All Damage Categories	(no damage)	Enter other damage	Deer	Human Trampled	Site Too Wet	Unknown
	92666-01-0001-			_				
	year:1	22	12	6	1		2	1
	92666-01-0002-							
	year:1	8	3	5				
	92666-01-0003-							
	year:1	21	7	12	1		1	
	92666-01-0004-							
	year:1	17	6	9			1	1
	92666-01-0005-		_	_		_		
	year:1	14	5	2		7		
	92666-01-0006- year:1	16	2	10			4	
	92666-01-0007-	10		10			4	
	year:1	21	2	17		2		
	92666-01-0008-	21		17				
	year:1	15	6	8		1		
	92666-01-0009-	10	0			<u>'</u>		
	year:1	15	7	6	1	1		
TOT:	9	149	50	75	3	11	8	2

Table 5. Stem Count by Plot and Species Badin Inn Stream Restoration/ EEP No. 92666 Appendix A **Total Planted Stems** plot 92666-01-0001plot 92666-01-0002plot 92666-01-0003plot 92666-01-0006plot 92666-01-0007plot 92666-01-0008plot 92666-01-0009plot 92666-01-0005plot 92666-01-0004 avg# stems plots year:1 year:1 year:1 year:1 year:1 year:1 year:1 year:1 **Species** Asimina triloba 4.5 Betula nigra Callicarpa 2.1 americana Carpinus 1.5 caroliniana Castanea 4.9 pumila Cercis 3.3 canadensis Cornus florida 1.3 Diospyros virginiana 2.2 Fraxinus pennsylvanica 1.7 Morus rubra Nyssa sylvatica 1.2 Prunus americana Quercus Quercus alba Quercus nigra Quercus phellos 1.3 Quercus velutina 2.5 Sambucus canadensis Unknown TOT

Table 6. Vegetation Problem Areas Badin Inn Stream Restoration/ EEP No. 92666 Appendix A									
Feature/Issue Station#/Range		Probable Cause	Photo #						
Bare Bank	14+10	Vegetation having difficulty becoming established on coir matting	VPA 12						
	23+20 to 23+90	Exposed soil and rocks from construction							
	24+30	Exposed soil, Seed washed away by storm							
	27+50 to 28+00	Sparsely vegetated due to construction							
Para Floodalaia	29+70 to 30+10	Exposed soil, Seed washed away by storm	VPA 2						
Bare Floodplain	39+40 to 40+00	Exposed soil, Seed washed away by storm							
	40+70 to 41+40	Exposed soil, Seed washed away by storm							
	45+70 to 46+20	Exposed soil and rocks from construction							
	46+60 to 46+80	Sparsely vegetated floodplain due to construction							
Invasive/Exotic Populations	48+30 to 49+80	Ligustrum sinense: encroachment from outside	VPA 1						
Vehicular	21+40	Vehicle travel across stream	VPA3						
Disturbance of Easement	42+50 to 46+00	to 46+00 Bridge construction							

Badin Inn Stream Restoration Site Year 1 Monitoring Report Appendix A-2 Vegetation Problem Area Photos

This photolog displays a representation of the types of vegetative problem areas that are present along the restored reaches of UT Little Mountain Creek. Not all vegetative problem areas are depicted.

VPA 12. Sparsely vegetated coir matting along bank.

VPA 5. Scoured floodplain with sparse vegetation.

VPA 1. Exotic Chinese privette establishing foothold in floodplain near confluence with Little Mountain Creek.

VPA 3. Mowed area in easement that receives vehicle traffic

Badin Inn Stream Restoration Site Year 1 Monitoring Report Appendix A-3 Vegetation Sampling Plot Photos

Vegetation Plot 1 facing 220°.

Vegetation Plot 2 facing 160°.

Vegetation Plot 3 facing 230°.

Vegetation Plot 4 facing 155°.

Vegetation Plot 5 facing 190°.

Vegetation Plot 6 facing 285°.

Badin Inn Stream Restoration Site Year 1 Monitoring Report Appendix A-3 Vegetation Sampling Plot Photos

Vegetation Plot 7 facing 260°.

Vegetation Plot 8 facing 300°.

Vegetation Plot 9 facing 330°.

APPENDIX B

- 1. Stream Problem Areas Plan View (not included, incorporated into Appendix C)
- 2. Table B.1. Stream Problem Areas Table
- 3. Representative Stream Problem Area Photos
- 4. Stream Photo Station Photos
- 5. Table B.2. Visual Morphological Stability Assessment
- 6. Annual Overlays of Cross Section Plots
- 7. Annual Overlays of Longitudinal Plots
- 8. Annual Overlays of Pebble Count Frequency Distribution Plots

Badin Inn Stream Restoration Site Mitigation Report Appendix B-2 Stream Problem Areas Table

B-1 Stream Problem Areas Plan View has been incorporated into Appendix C (Integrated Plan View)

Table B.1. Stream Problem Areas Badin Inn Stream Restoration/ EEP No. 92666 Appendix B									
Feature/Issue	Station#/Range	Probable Cause	Photo #						
Overflow channel forming	12+60 to 13+90	Frequent flooding and steeper grade	SPA 3						
Overflow channel forming	22+10 to 22+60	Frequent flooding and steeper grade	SPA 1						
Bank scour	18+90	Lack of protection from coir matting	SPA 2						

Badin Inn Stream Restoration Site Mitigation Report Appendix B-3 Stream Problem Area Photos

SPA 1. Stream overflow channel beginning to form.

SPA3. Stream overflow channel beginning to form.

SPA 2. Bank scour.

Badin Inn Stream Restoration Site Mitigation Report Appendix B-4 Stream Photo-Station Photos

Photo Point 1. Upstream From Cross Section #1.

Photo Point 1. Downstream from Cross Section #1.

Photo Point 2. Upstream from Cross Section 2.

Photo Point 2. Downstream from Cross Section #2.

Photo Point 3. Upstream from Cross Section 3.

Photo Point 3. Downstream from Cross Section #3.

Badin Inn Stream Restoration Site Mitigation Report Appendix B-4 Stream Photo-Station Photos

Photo Point 4. Upstream from Cross Section #4.

Photo Point 4. Downstream from Cross Section #4.

Photo Point 5. Upstream from Cross Section #5.

Photo Point 5. Downstream from Cross Section #5.

Photo Point 6. Upstream from Cross Section #6.

Photo Point 6. Downstream from Cross Section #6.

Badin Inn Stream Restoration Site Mitigation Report Appendix B-4 Stream Photo-Station Photos

Photo Point 7. Upstream from Cross Section #7.

Photo Point 7. Downstream from Cross Section #7.

Photo Point 8. Upstream from Cross Section #8.

Photo Point 8. Downstream from Cross Section #9.

Photo Point 9. Upstream from Cross Section #9 Tributary.

Photo Point 9. Downstream from Cross Section #9 Tributary.

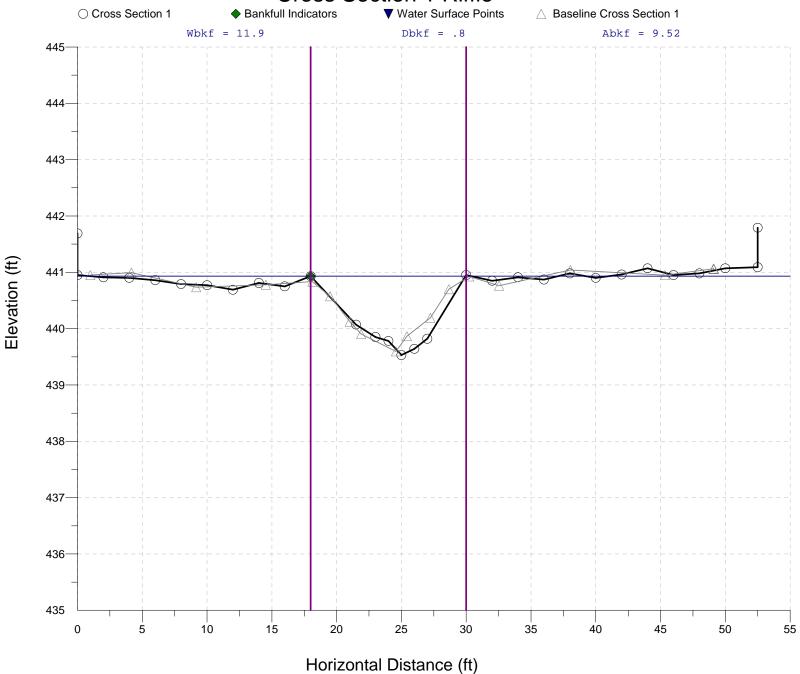
Badin Inn Stream Restoration Site Mitigation Report Appendix B-4 Stream Photo-Station Photos

Photo Point 10. Upstream from Cross Section # 10.

Photo Point 10. Downstream from Cross Section #10.

Badin Inn Stream Restoration Site Mitigation Report Appendix B-5

Visual Morphological Stability Assessment


Table B2. Visual Morphological Stability Assessment **Badin Inn Stream Restoration/ EEP Number 92666** UT Little Mountain Creek/ 4,022 feet # Stable Total Number/ Number % Feature Perform. Total feet in Perform. Perform. No. per Feature as unstable in stable Mean or Category Metric (Per As-built and reference baselines) Intended As-built state condition Total A. Riffles 1. Present? 58 58 NA 100 100 2. Armor stable (e.g. no displacement) 57 98 58 1 98 3. Facet grade appears stable 58 58 NA 100 100 4. Minimal evidence of embedding/fining 58 58 NA 100 100 5. Length appropriate 58 58 NA 100 99 1. Present? (e.g. not subject to severe 100 B. Pools aggrad. Or migrat.?) 58 58 NA 100 2. Sufficiently deep (Max Pool D:Mean Bkf>1.6? NA NA NA NA NA 3. Length appropriate? 58 58 NA 100 100 C. 1. Upstream of meander bend NA NA Thalweg (run/inflection) centering? NA NA NA 2. Downstream of meander (glide/inflection) centering? NA NA NA NA NA D. 1. Outer bend in state of limited/controlled 44 44 NA Meanders erosion? 100 100 2. Of those eroding, # w/concomitant point NA NA NA 100 100 bar formation? 3. Apparent Rc within spec? 100 44 44 NA 100 4. Sufficient floodplain access and relief? 44 44 NA 100 100 E. Bed 1. General channel bed aggradation areas (bar formation) NA NA 100 100 General 2. Channel bed degradation - areas of increasing down-cutting or headcutting NA NA 100 100 1. Actively eroding, wasting, or slumping NA NA F. Bank bank 100 100 1. Free of back or arm scour? 17 17 NA G. Vanes 100 100 2. Height appropriate? 17 17 NA 100 100 NA 3. Angle and geometry appear appropriate? 17 17 100 100 4. Free of piping or other structural failures? 17 17 NA 100 100 H. Wads/ Boulders 1. Free of scour? NA NA NA NA NA 2. Footing stable? NA NA NA NA NA

Badin Inn Stream Restoration Site Mitigation Report Appendix B-5

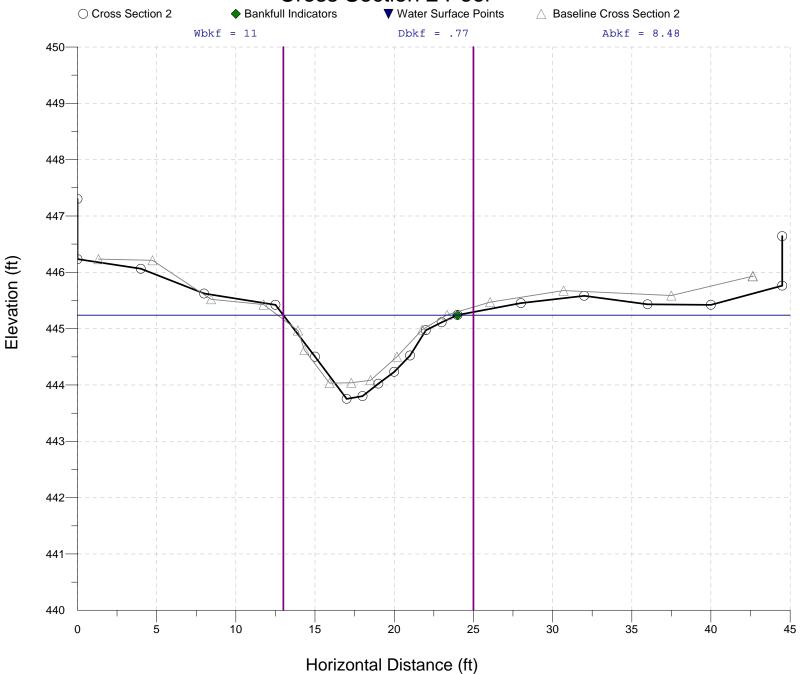
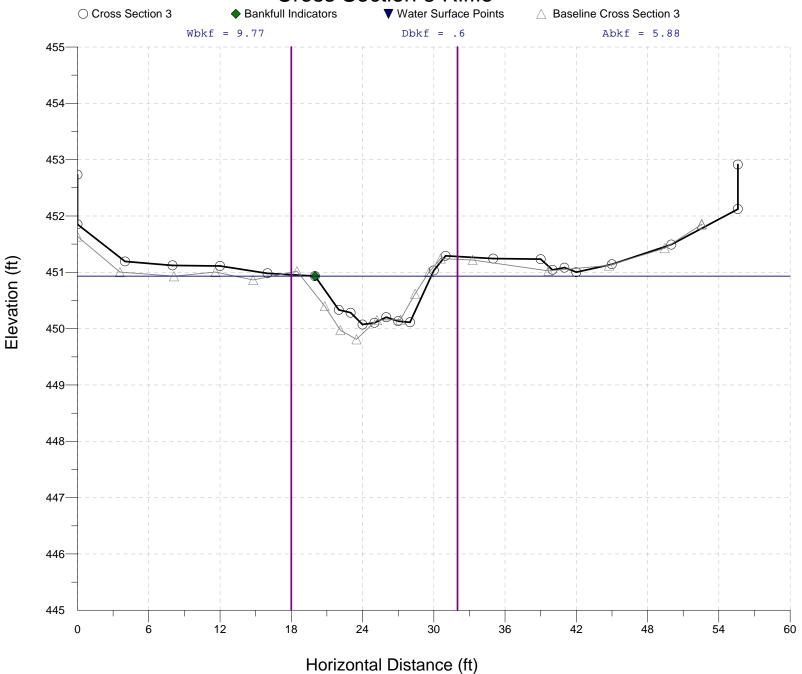
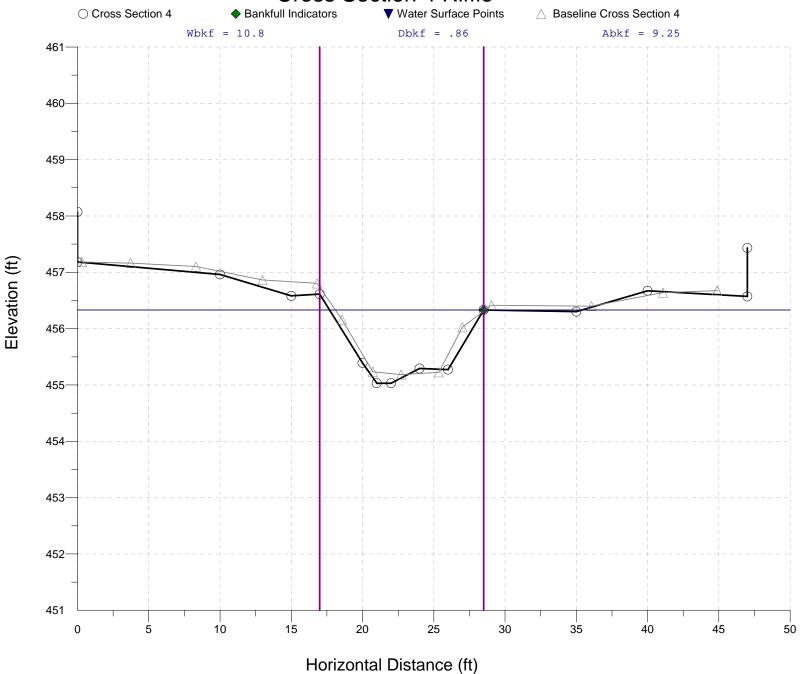
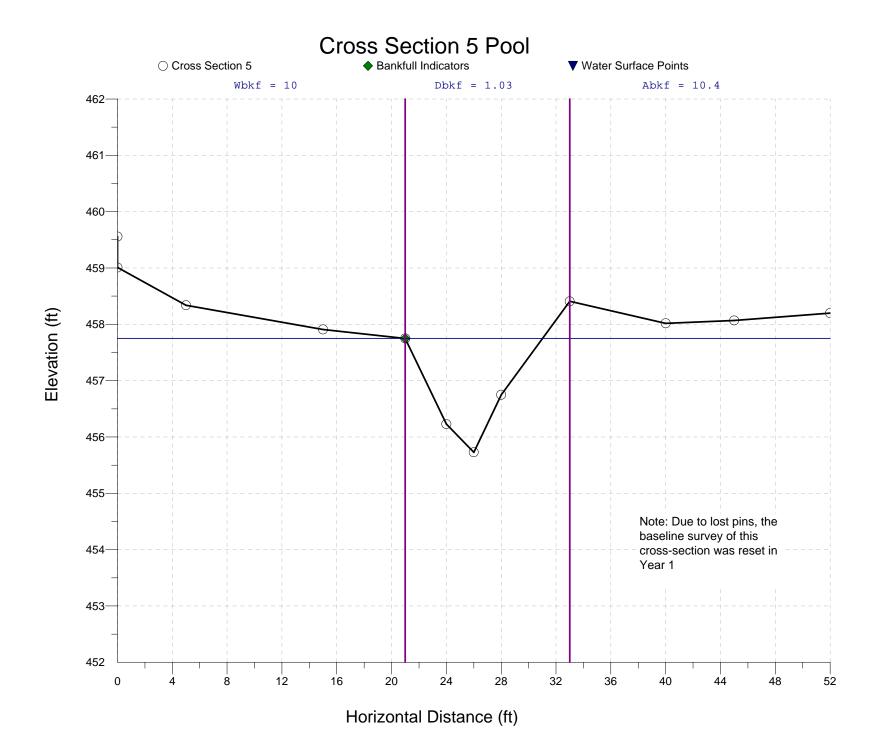

Visual Morphological Stability Assessment

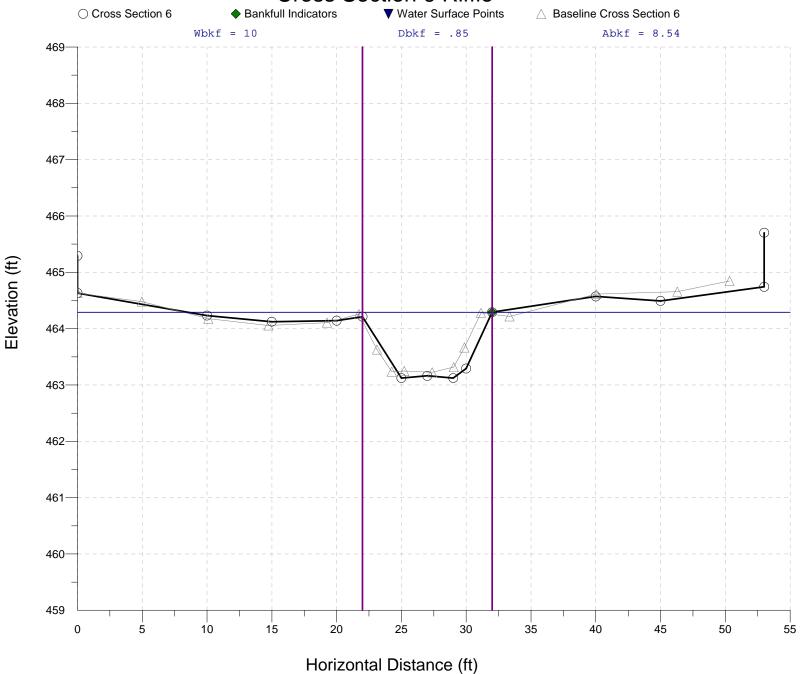
Table B2. Visual Morphological Stability Assessment Badin Inn Stream Restoration/ EEP Number 92666 Tributary/ 180 feet						
Feature		# Stable Number Perform. as	Total No. per	Total Number/ feet in unstable	% Perform. in stable	Feature Perform. Mean or
Category	Metric (Per As-built and reference baselines)	Intended	As-built	state	condition	Total
A. Riffles	1. Present?	4	4	NA	100	100
	Armor stable (e.g. no displacement)	4	4	0	100	100
	Facet grade appears stable	4	4	NA	100	100
	4. Minimal evidence of embedding/fining	4	4	NA	100	100
	5. Length appropriate	4	4	NA	100	100
B. Pools	Present? (e.g. not subject to severe aggrad. Or migrat.?)	4	4	NA	100	100
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?	NA	NA	NA	NA	NA
	3. Length appropriate?	4	4	NA	100	100
C. Thalweg	Upstream of meander bend (run/inflection) centering?	NA	NA	NA	NA	NA
	2. Downstream of meander (glide/inflection) centering?	NA	NA	NA	NA	NA
D. Meanders	Outer bend in state of limited/controlled erosion?	4	4	NA	100	100
	2. Of those eroding, # w/concomitant point bar formation?	NA	NA	NA	100	100
	3. Apparent Rc within spec?	4	4	NA	100	100
	4. Sufficient floodplain access and relief?	4	4	NA	100	100
E. Bed General	General channel bed aggradation areas (bar formation)	NA	NA	NA	100	100
	Channel bed degradation - areas of increasing down-cutting or headcutting	NA	NA	NA	100	100
F. Bank	Actively eroding, wasting, or slumping bank	NA	NA	NA	100	100
G. Vanes	1. Free of back or arm scour?	NA	NA	NA	NA	NA
	2. Height appropriate?	NA	NA	NA	NA	NA
	3. Angle and geometry appear appropriate?	NA	NA	NA	NA	NA
	4. Free of piping or other structural failures?	NA	NA	NA	NA	NA
H. Wads/ Boulders	1. Free of scour?	NA	NA	NA	NA	NA
	2. Footing stable?	NA	NA	NA	NA	NA


Cross Section 1 Riffle

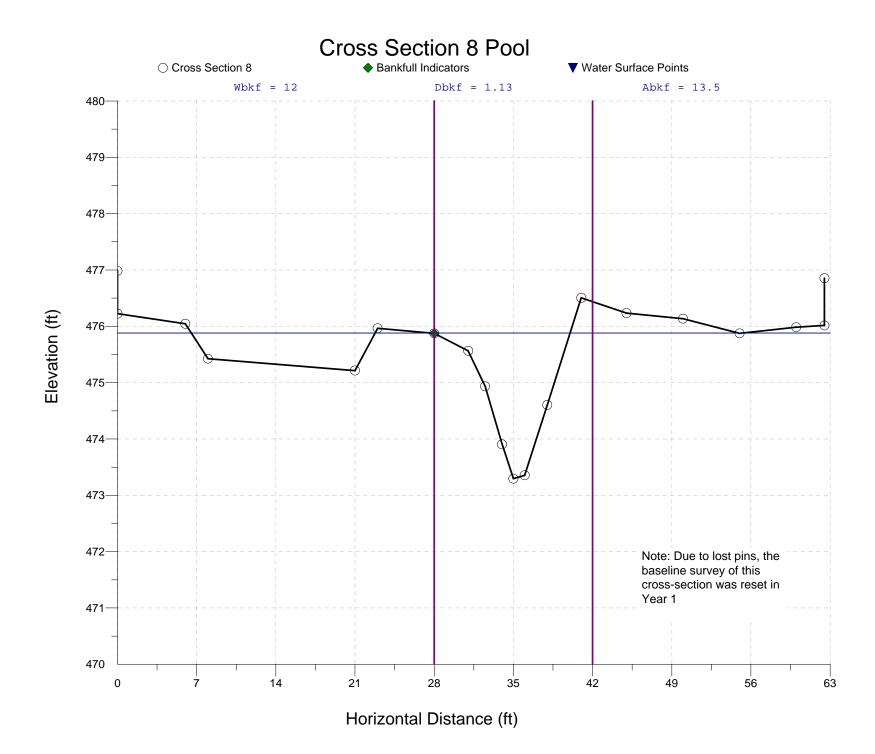

Cross Section 2 Pool

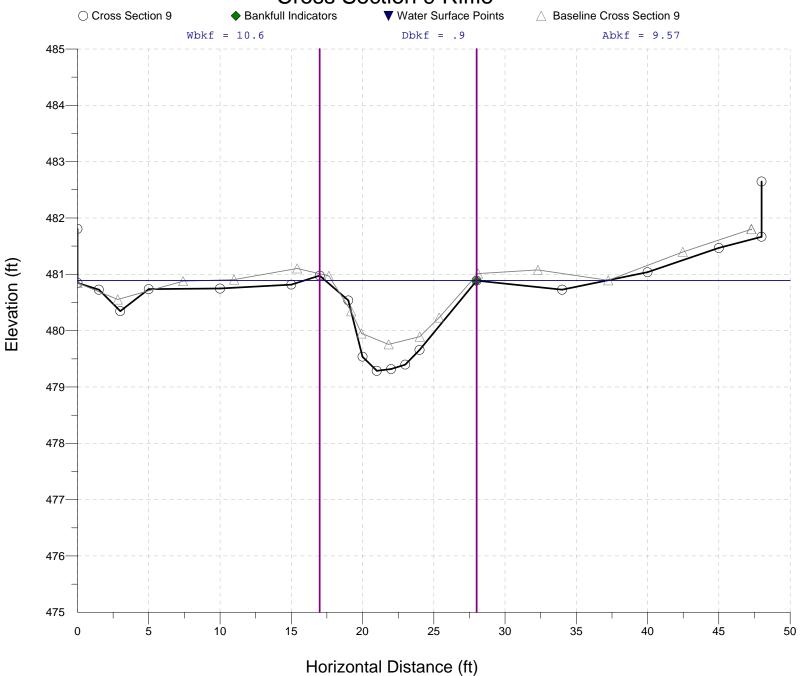


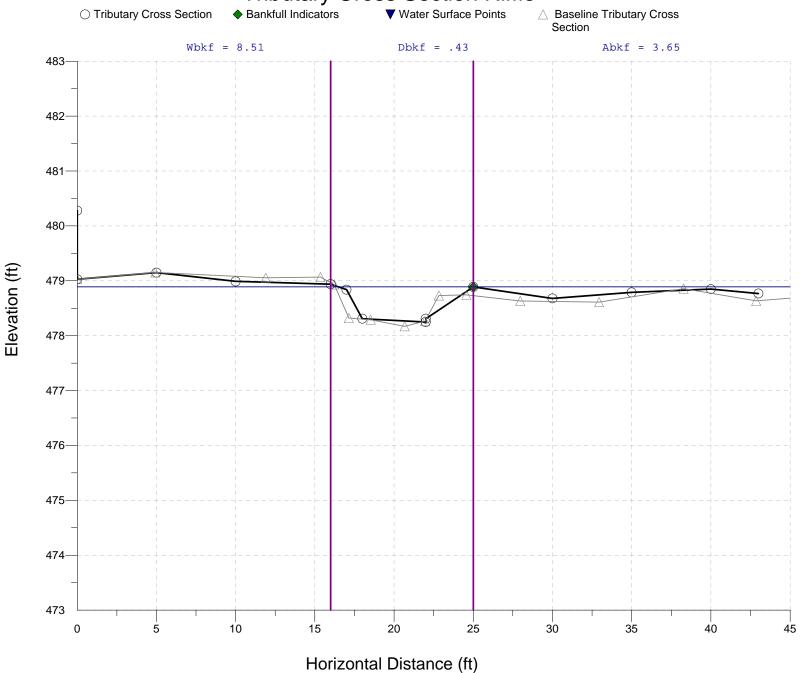
Cross Section 3 Riffle

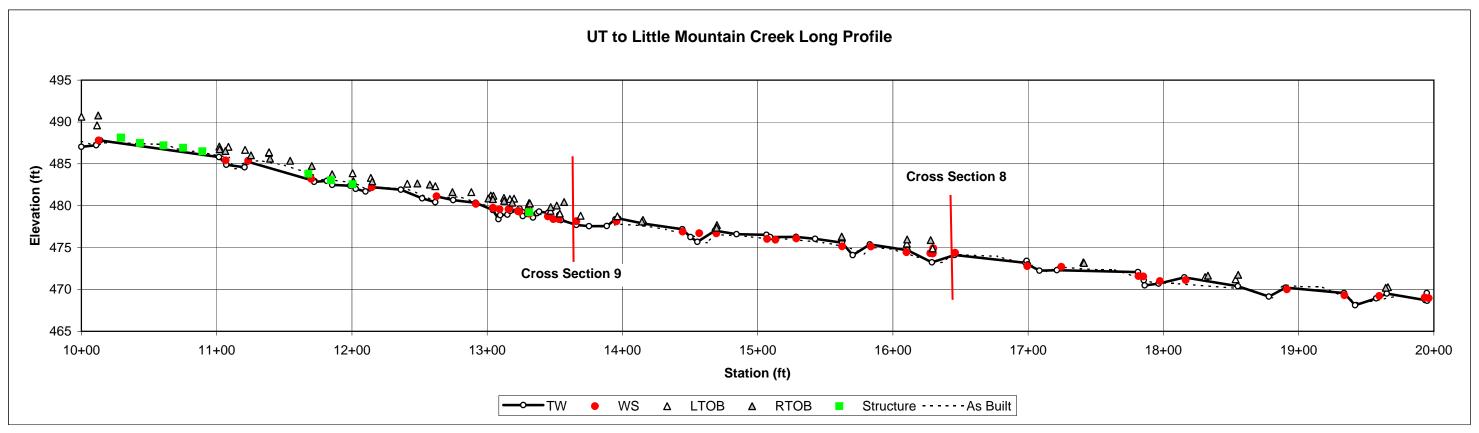


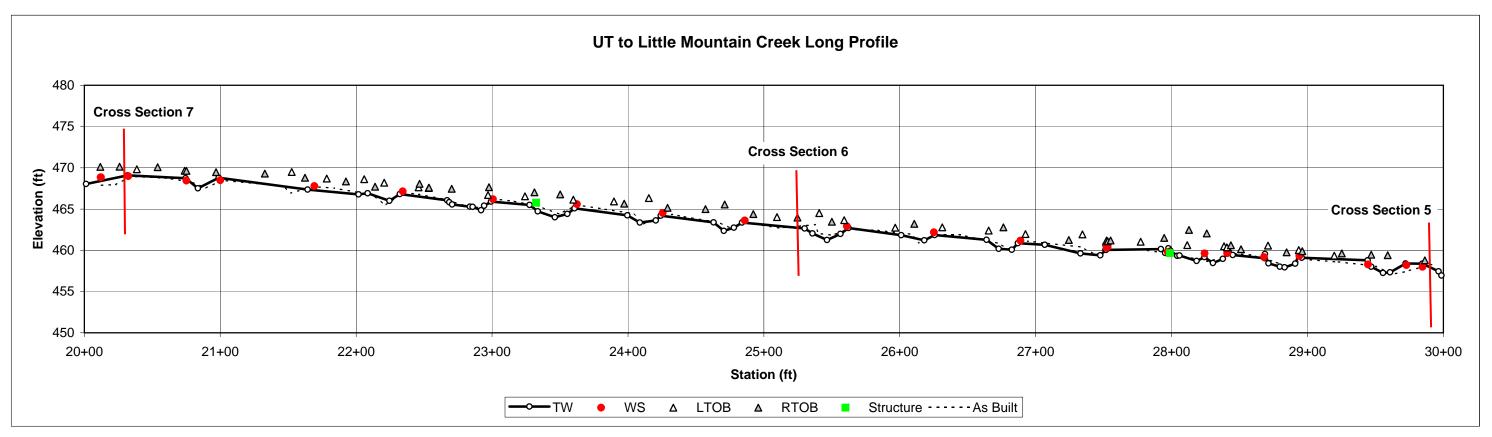
Cross Section 4 Riffle

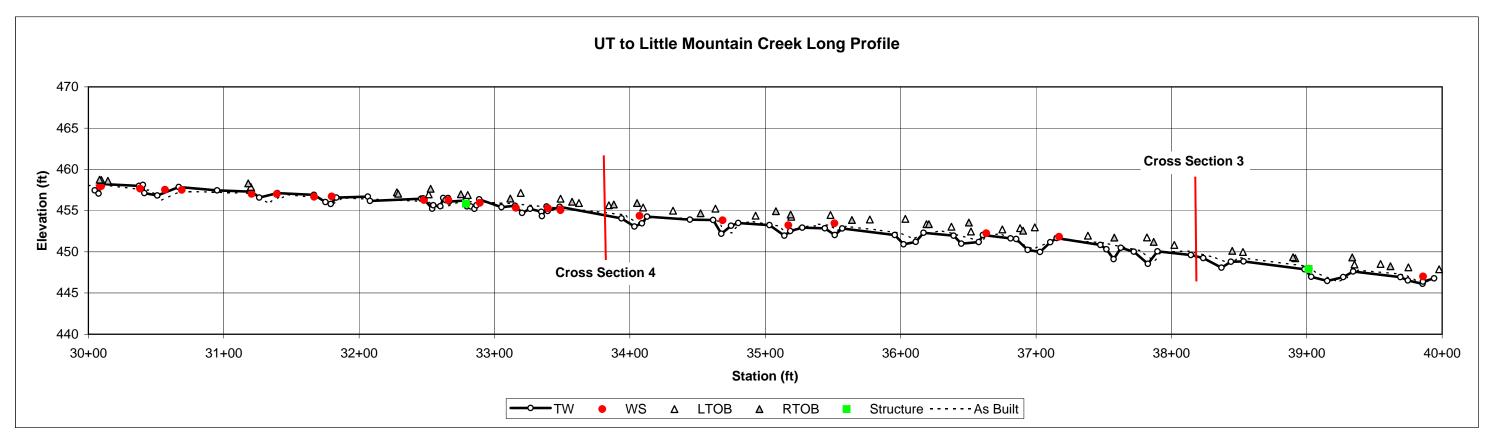


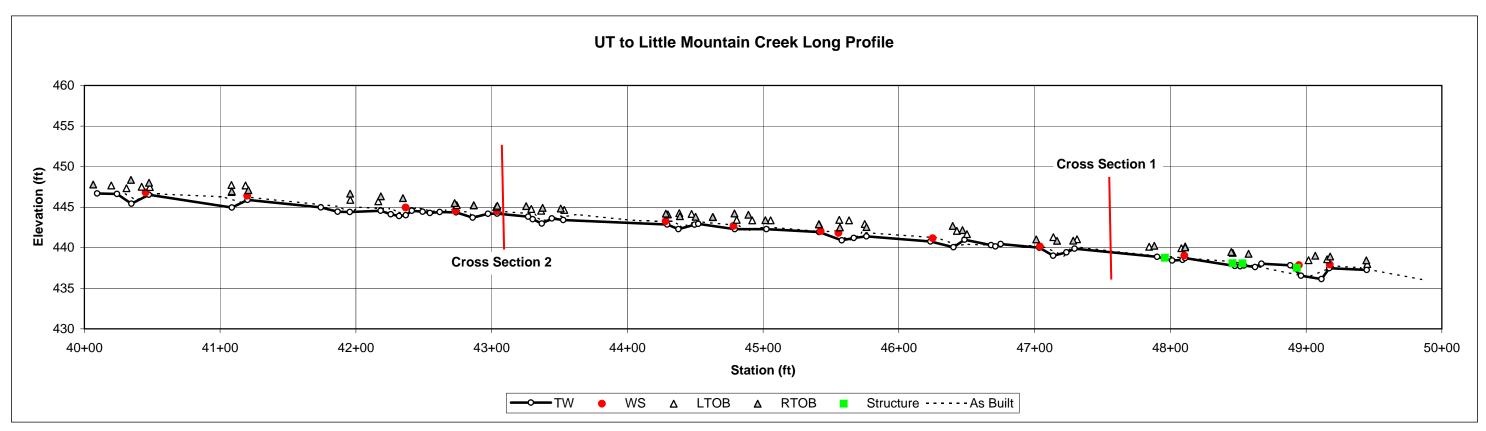

Cross Section 6 Riffle

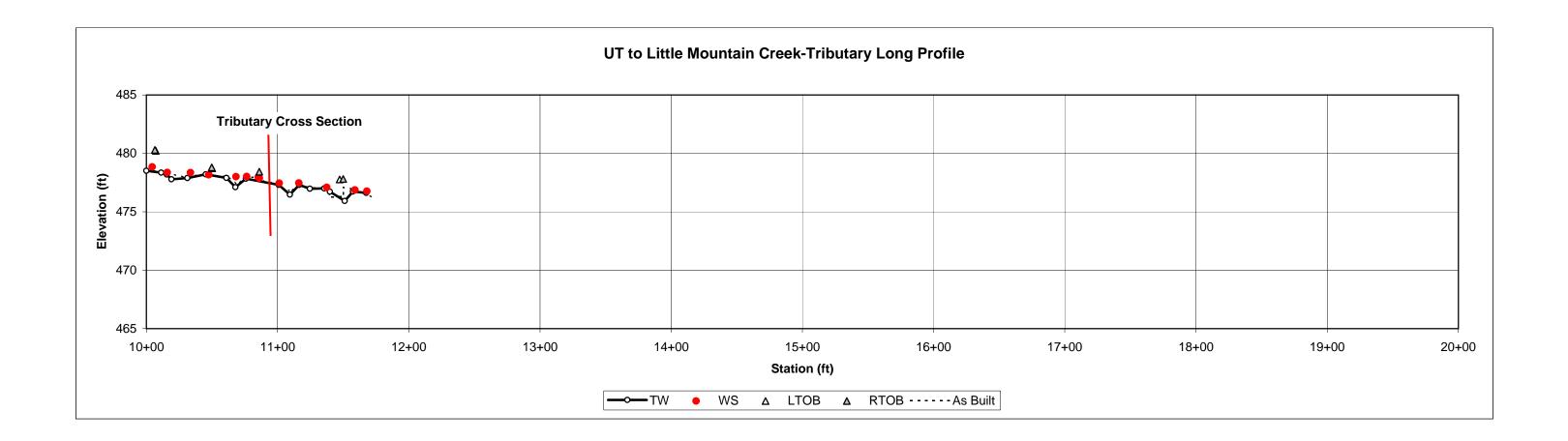

Cross Section 7 pool
ull Indicators
Water Surface Points ○ Cross Section 7 Bankfull Indicators ∆ Baseline Cross Section 7 Dbkf = 1.21Abkf = 17.3Wbkf = 14.2475-474-473-472-Elevation (ft) 471 470-469-468-467-466-465 12 18 24 30 0 36 6 42 Horizontal Distance (ft)

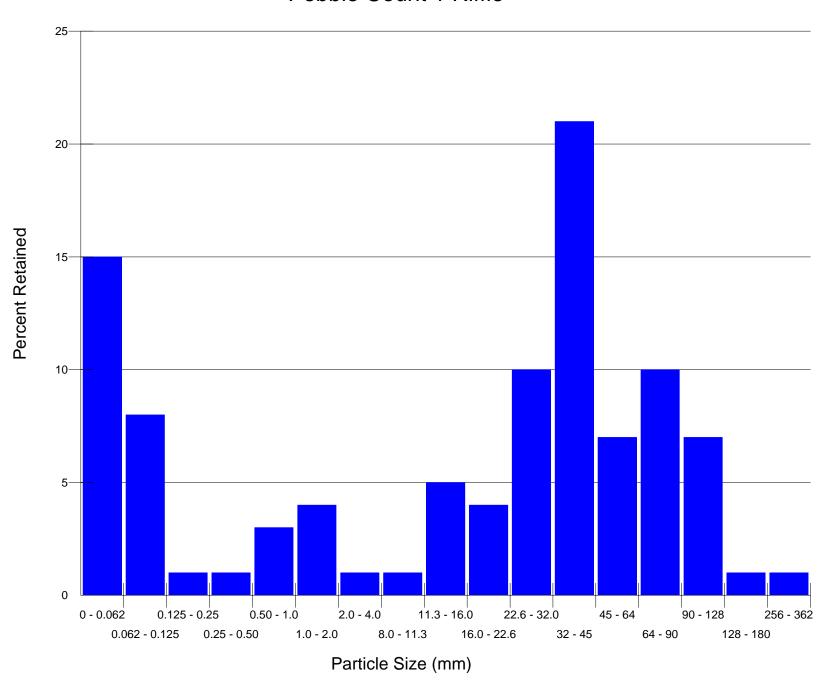


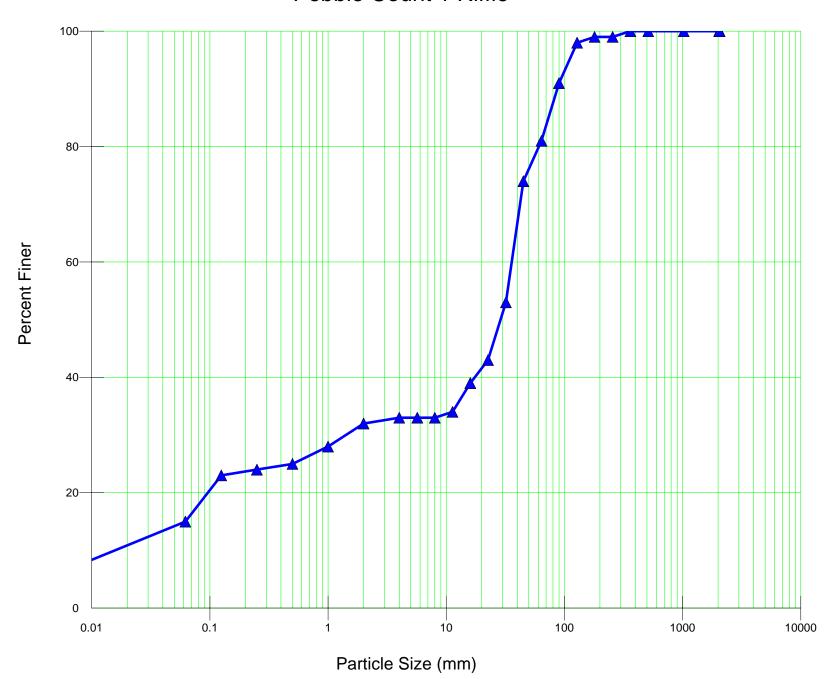

Cross Section 9 Riffle

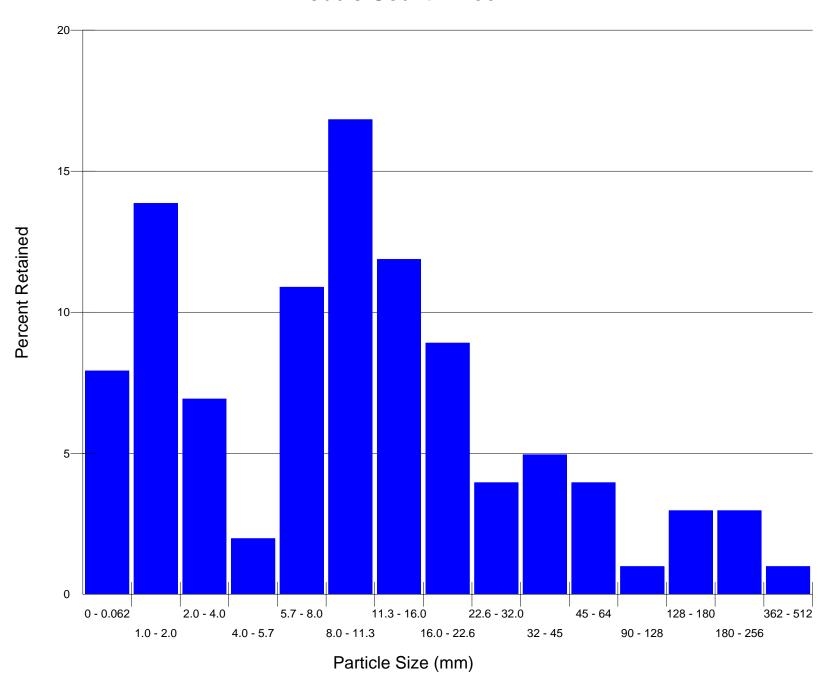


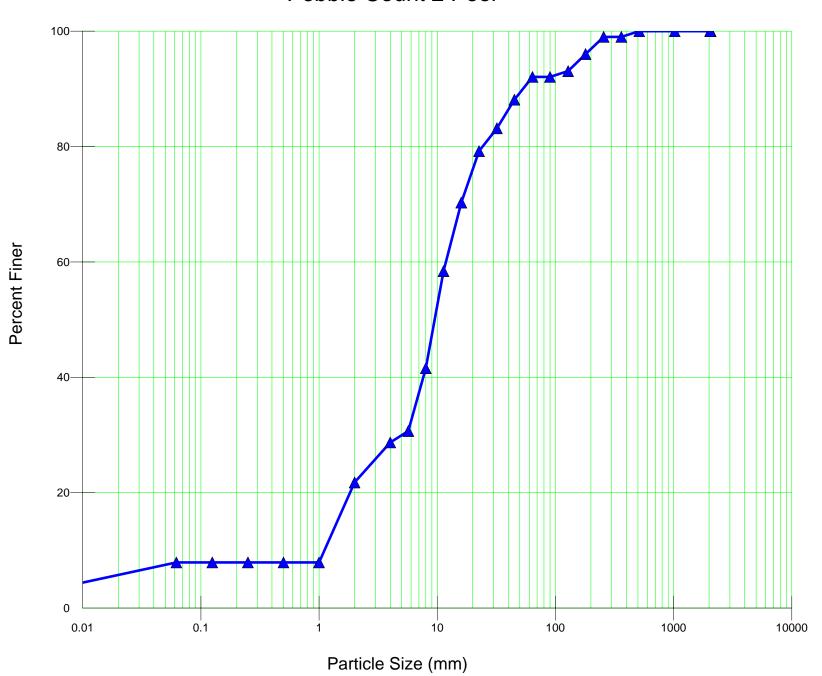

Tributary Cross Section Riffle

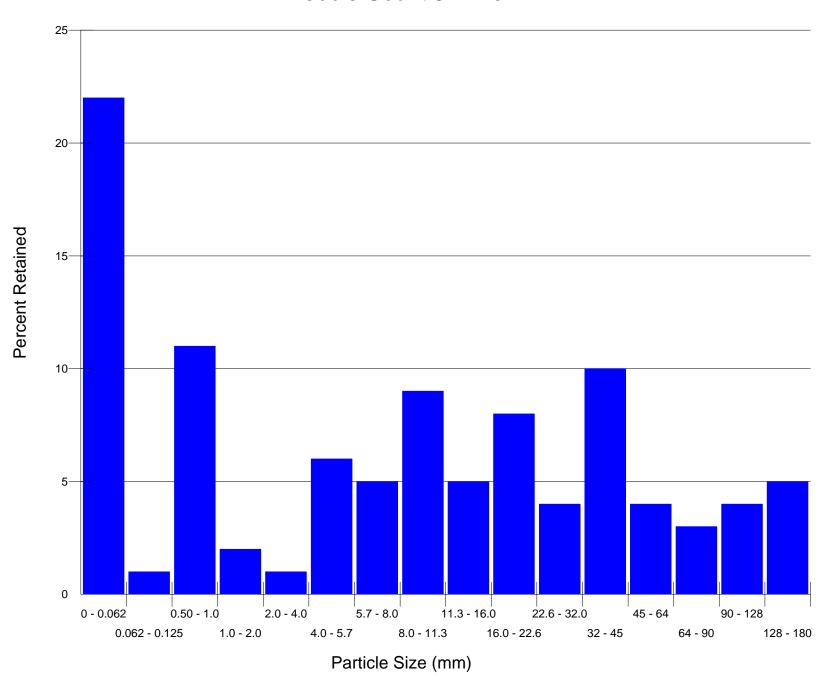


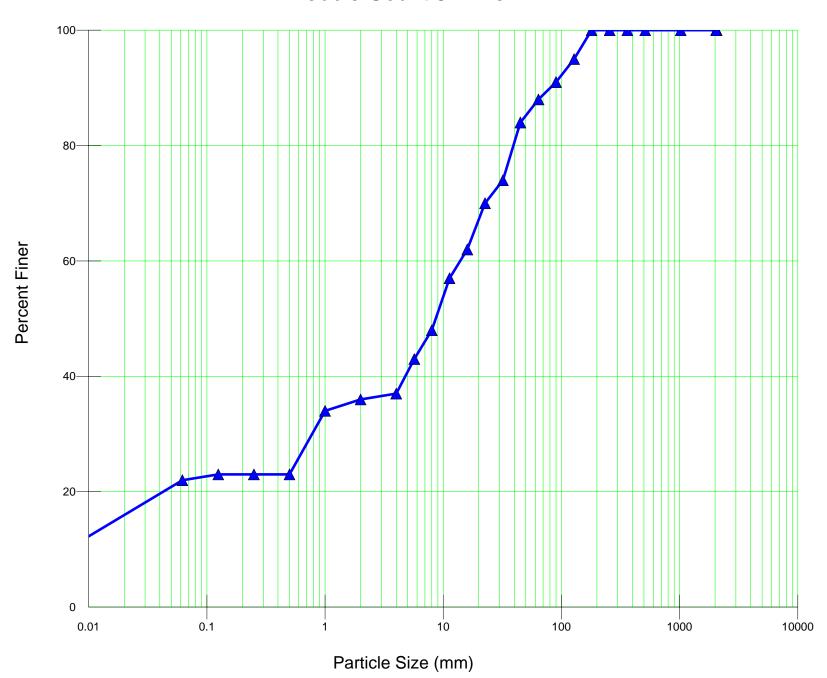


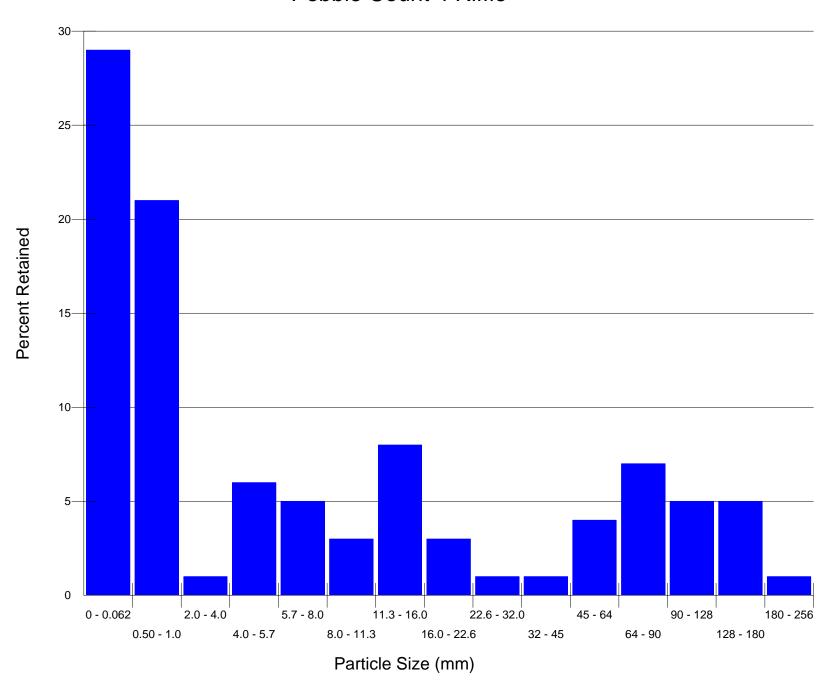


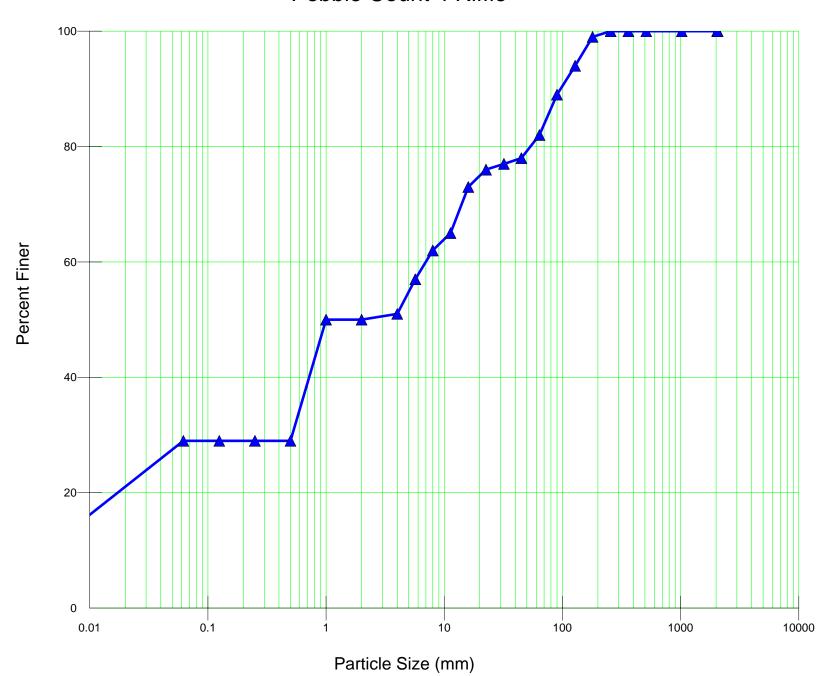

Pebble Count 1 Riffle

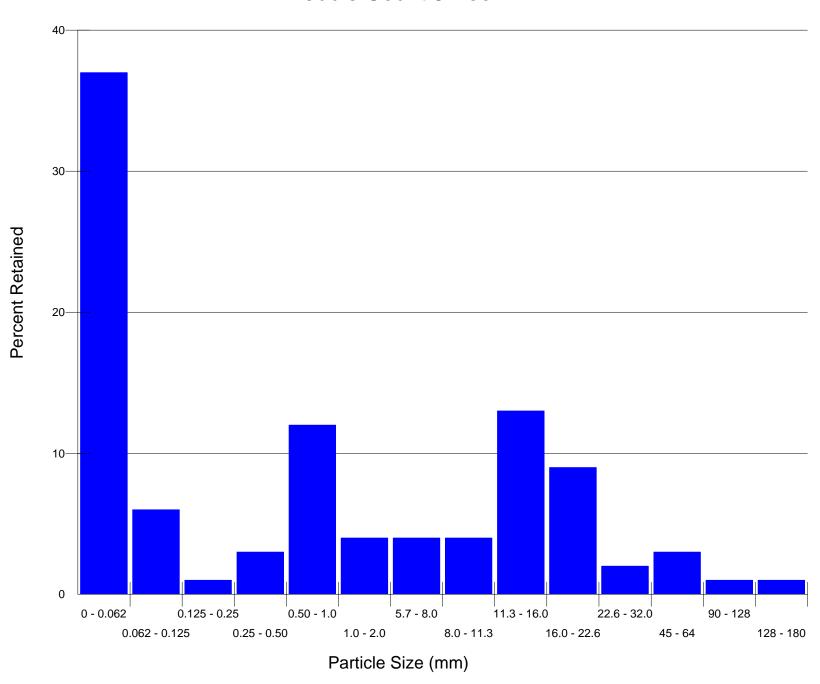

Pebble Count 1 Riffle

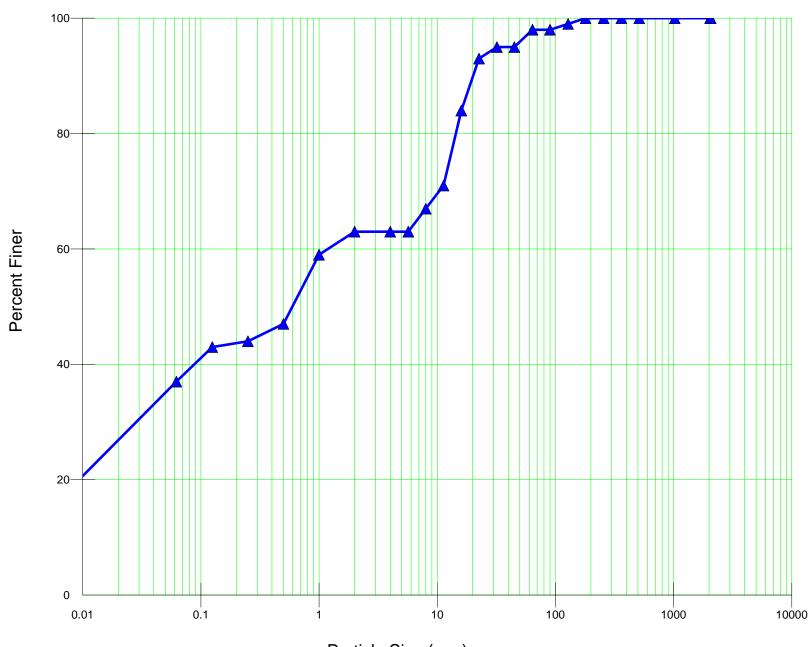

Pebble Count 2 Pool


Pebble Count 2 Pool

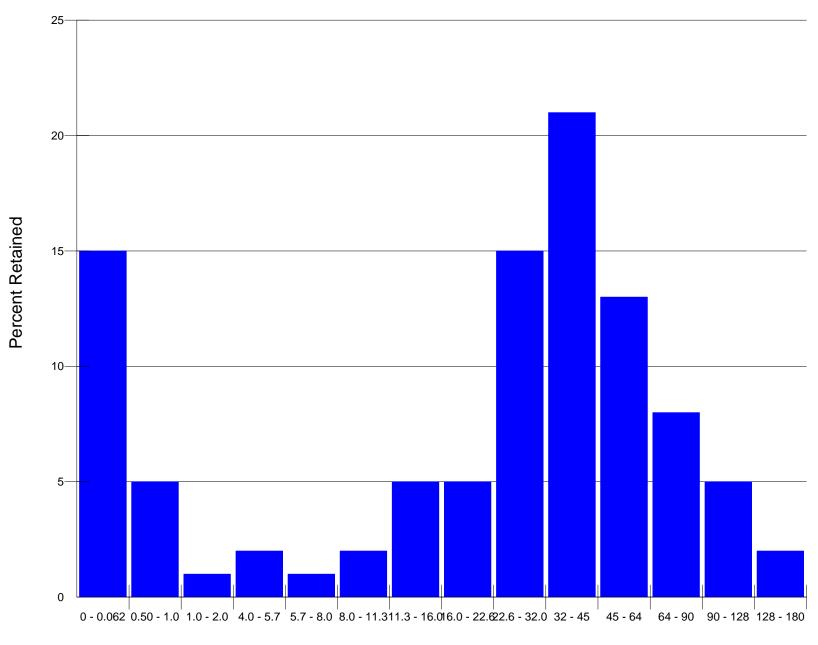

Pebble Count 3 Riffle


Pebble Count 3 Riffle

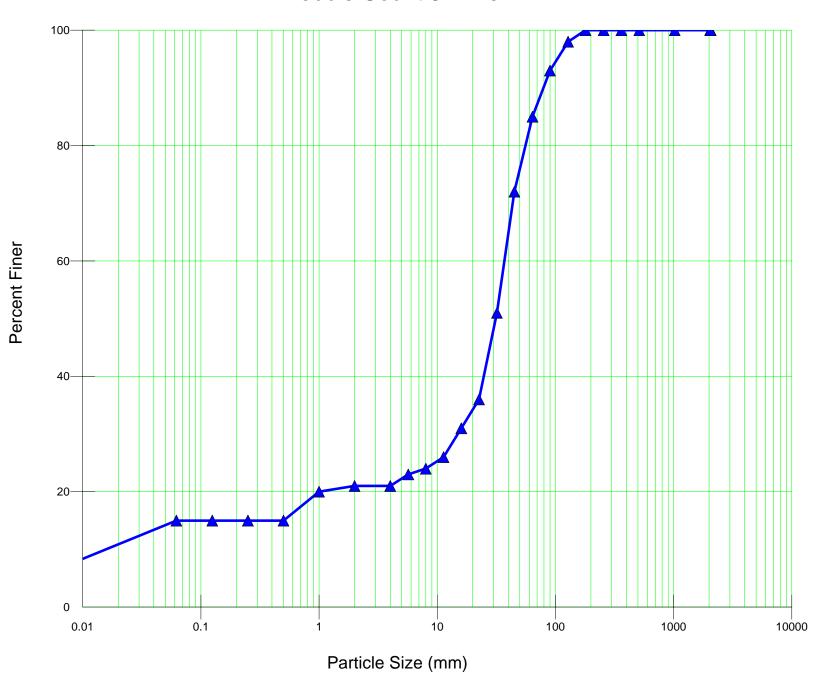

Pebble Count 4 Riffle


Pebble Count 4 Riffle

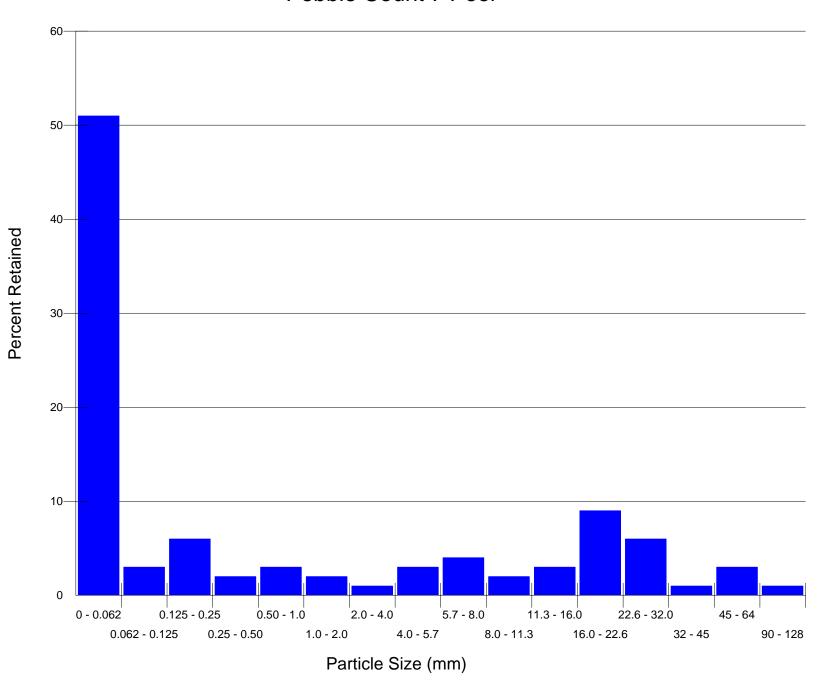
Pebble Count 5 Pool



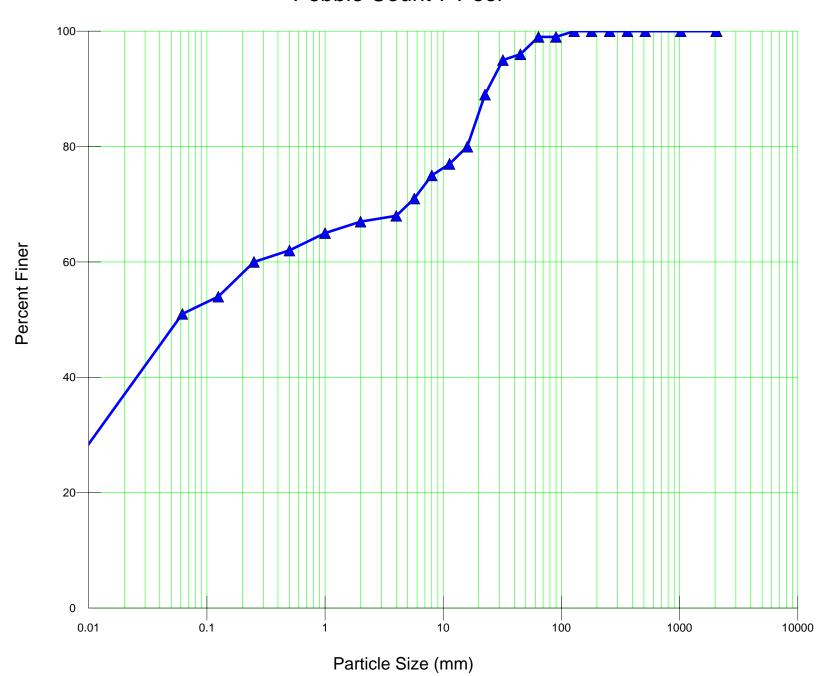
Pebble Count 5 Pool

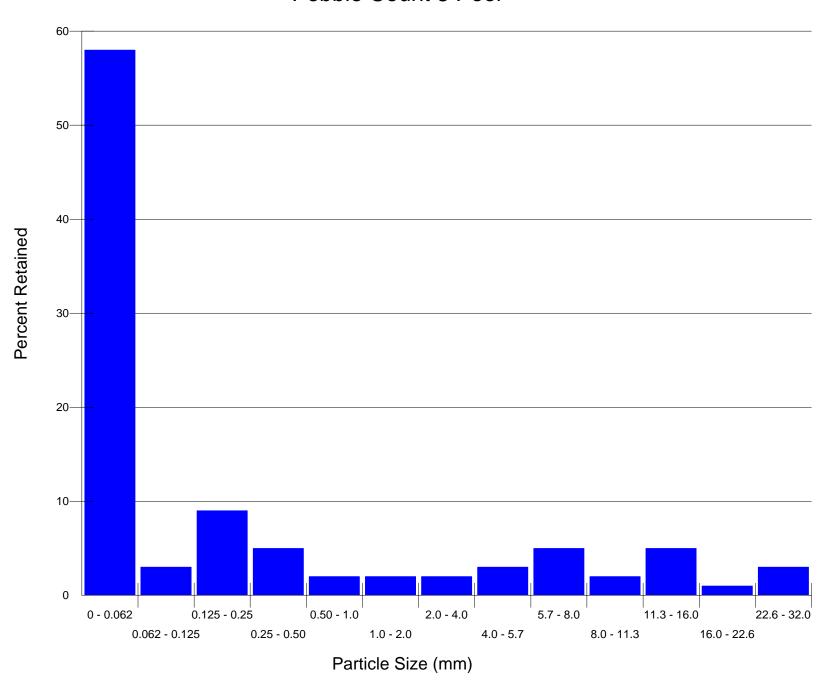

Particle Size (mm)

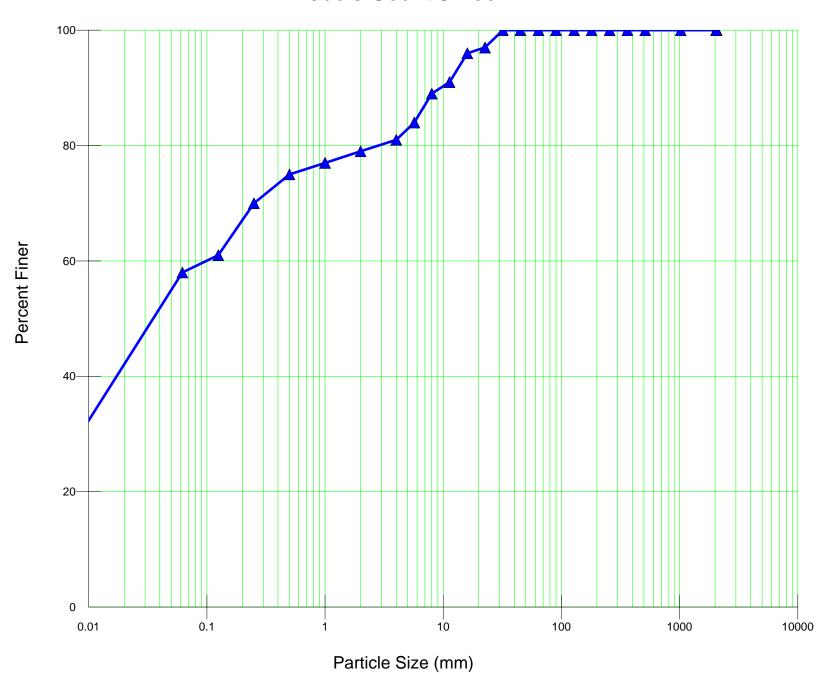
Pebble Count 6 Riffle

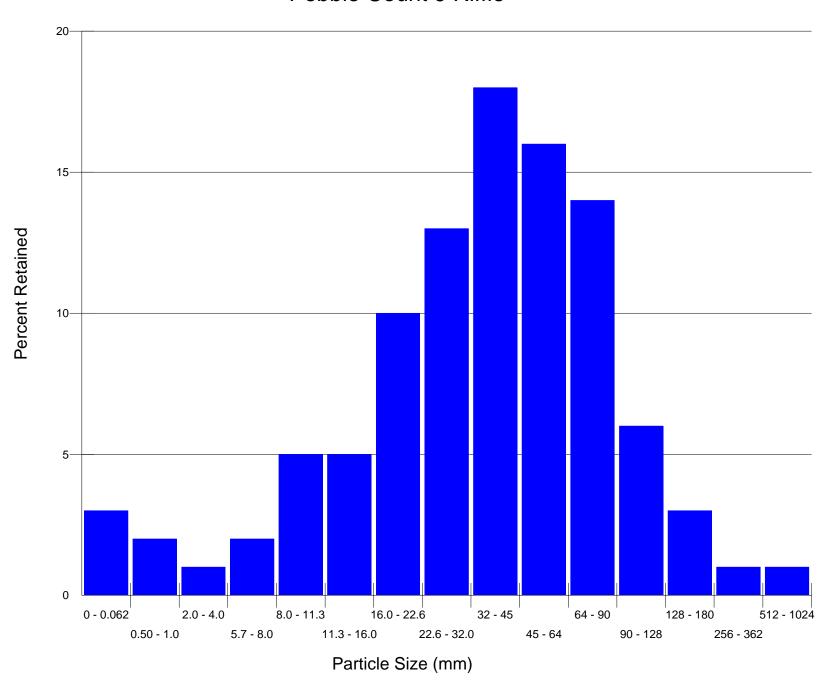


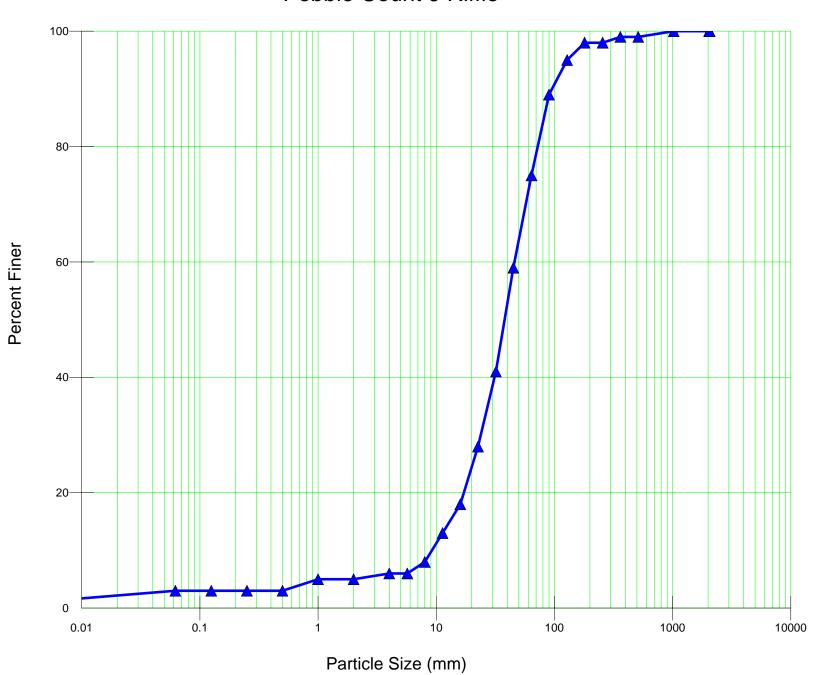
Particle Size (mm)

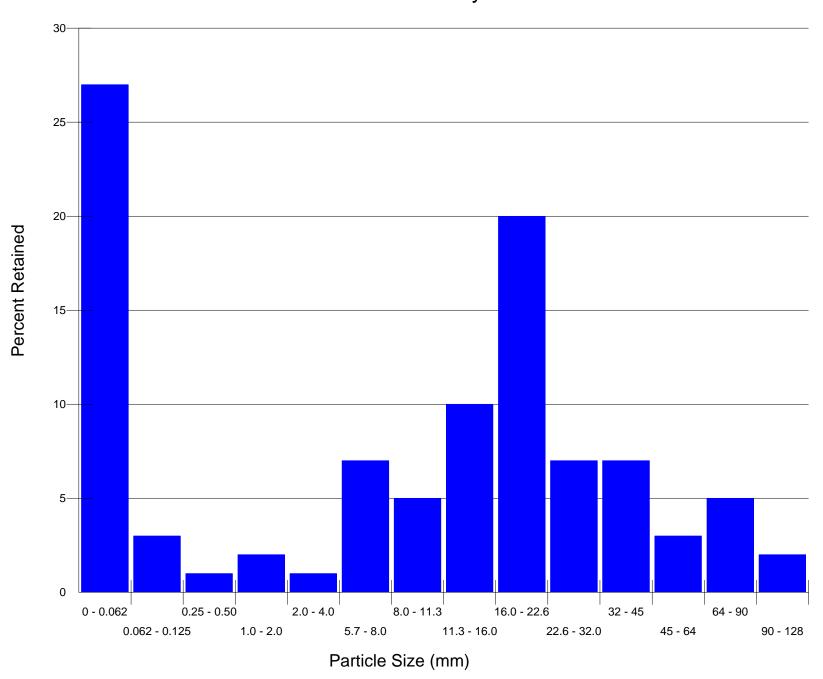

Pebble Count 6 Riffle

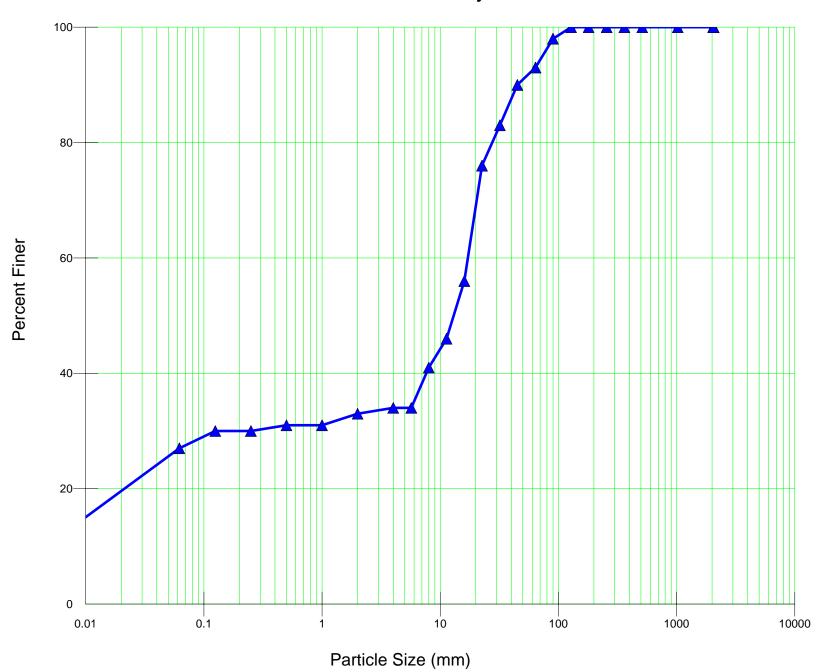

Pebble Count 7 Pool


Pebble Count 7 Pool

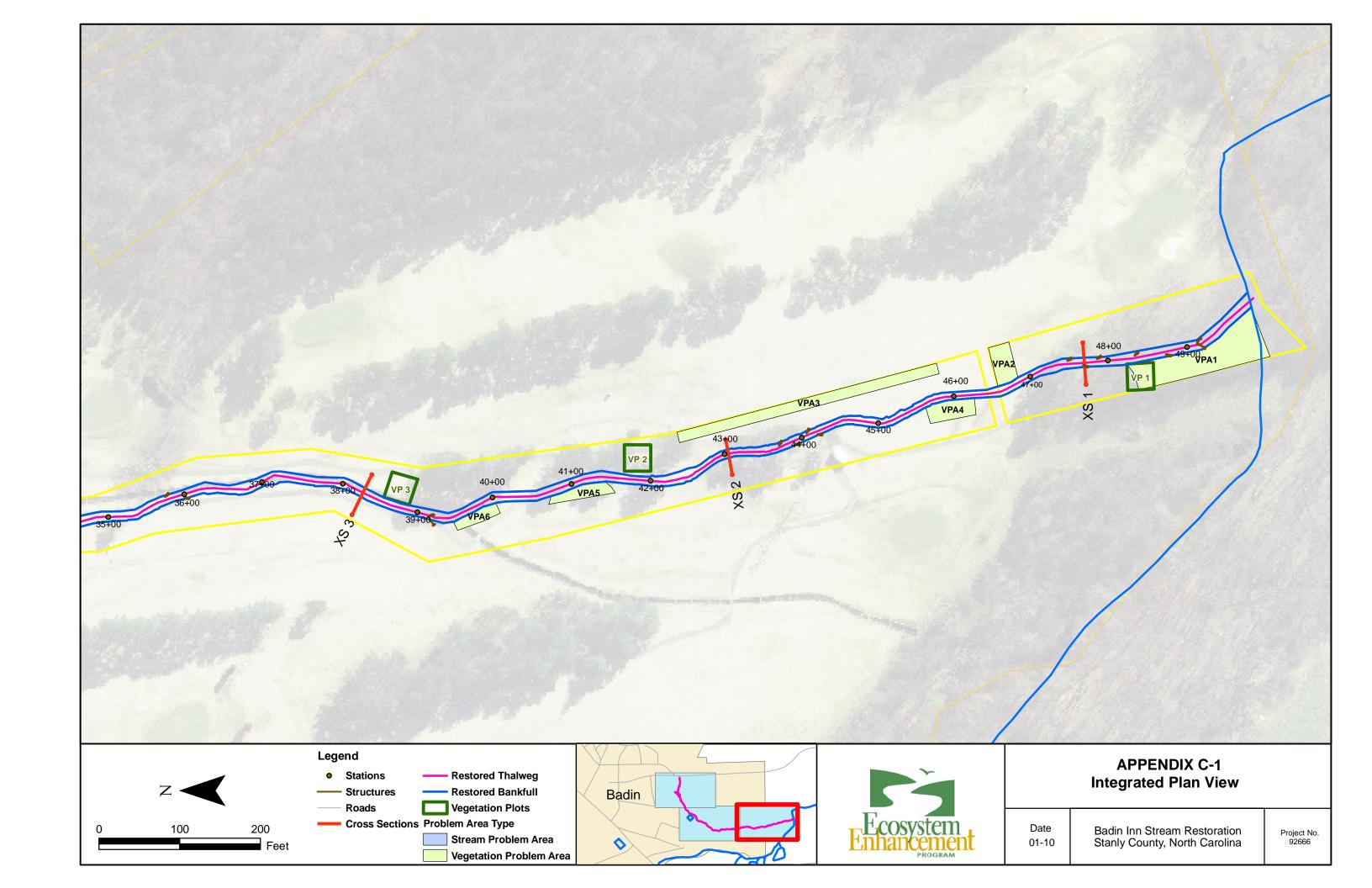

Pebble Count 8 Pool

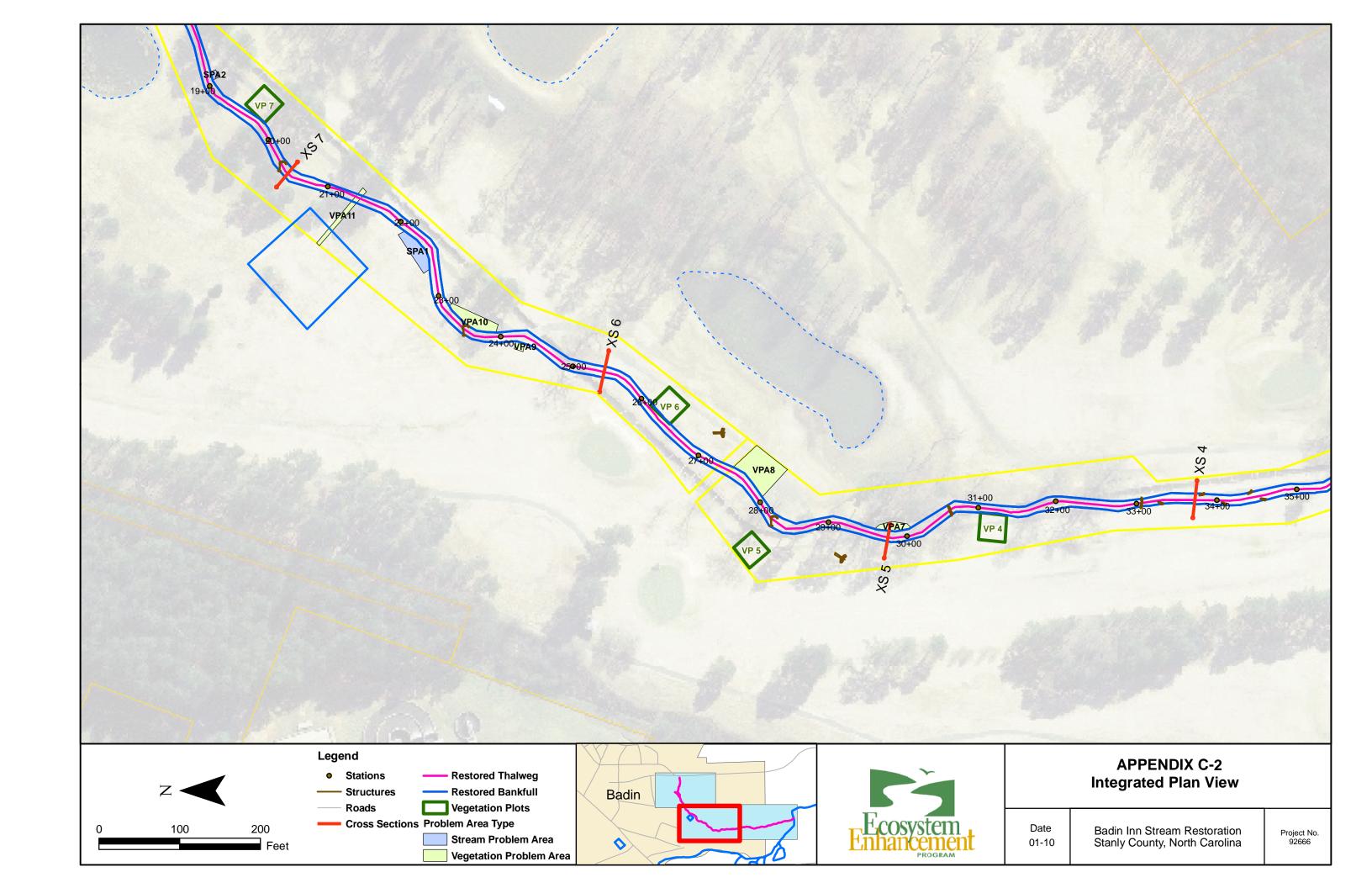

Pebble Count 8 Pool

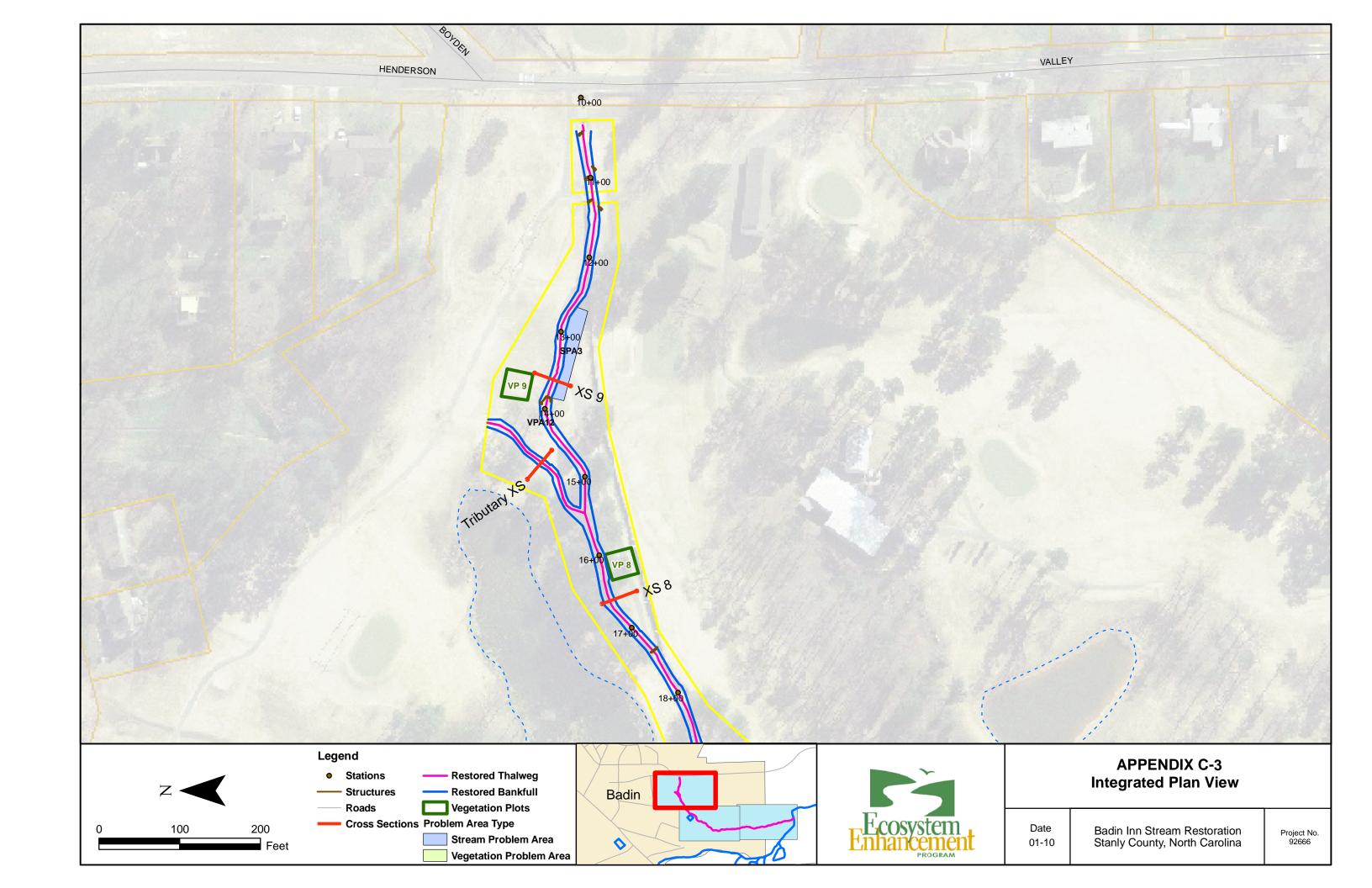

Pebble Count 9 Riffle


Pebble Count 9 Riffle

Pebble CountTributary Riffle




Pebble Count Tributary Riffle



APPENDIX C

1. Integrated Plan View

